Suppr超能文献

多中心、多供应商和多病种心脏分割:M&Ms 挑战赛。

Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge.

出版信息

IEEE Trans Med Imaging. 2021 Dec;40(12):3543-3554. doi: 10.1109/TMI.2021.3090082. Epub 2021 Nov 30.

Abstract

The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.

摘要

深度学习的出现极大地推动了心脏磁共振(CMR)分割的技术发展。在过去的几年中,已经提出了许多技术,使得自动分割的准确性接近人类的表现。然而,这些模型通常是在单一临床中心或同质成像协议的心脏成像样本上进行训练和验证的。这阻碍了可推广到不同临床中心、成像条件或扫描仪供应商的模型的开发和验证。为了促进可推广的深度学习在心脏分割领域的进一步研究和科学基准测试,本文介绍了最近在 MICCAI 2020 会议期间组织的多中心、多供应商和多疾病心脏分割(M&Ms)挑战赛的结果。共有 14 个团队针对该问题提交了不同的解决方案,结合了各种基线模型、数据增强策略和领域自适应技术。获得的结果表明了强度驱动的数据增强的重要性,以及需要进一步研究以提高对看不见的扫描仪供应商或新成像协议的可推广性。此外,我们还提供了一个新的资源,即由六个医院和三个不同国家(西班牙、加拿大和德国)的四个不同的扫描仪供应商采集的 375 个异构的 CMR 数据集,我们将其提供给社区作为开放获取资源,以促进该领域的未来研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验