Suppr超能文献

用于发现新的有影响力的COVID-19研究方法的动态链接预测

Dynamic Link Prediction for Discovery of New Impactful COVID-19 Research Approaches.

作者信息

Wang Xiangyu, Li Yuan, Ban Taiyu, Zhu Jiarun, Chen Lyuzhou, Usman Muhammad, Wang Xin, Chen Huanhuan, Chen Xiaomei, Leung Cyril, Miao Chunyan

出版信息

IEEE J Biomed Health Inform. 2022 Dec;26(12):5883-5894. doi: 10.1109/JBHI.2022.3212863. Epub 2022 Dec 7.

Abstract

In fighting the COVID-19 pandemic, the main challenges include the lack of prior research and the urgency to find effective solutions. It is essential to accurately and rapidly summarize the relevant research work and explore potential solutions for diagnosis, treatment and prevention of COVID-19. It is a daunting task to summarize the numerous existing research works and to assess their effectiveness. This paper explores the discovery of new COVID-19 research approaches based on dynamic link prediction, which analyze the dynamic topological network of keywords to predict possible connections of research concepts. A dynamic link prediction method based on multi-granularity feature fusion is proposed. Firstly, a multi-granularity temporal feature fusion method is adopted to extract the temporal evolution of different order subgraphs. Secondly, a hierarchical feature weighting method is proposed to emphasize actively evolving nodes. Thirdly, a semantic repetition sampling mechanism is designed to avoid the negative effect of semantically equivalent medical entities on the real structure of the graph, and to capture the real topological structure features. Experiments are performed on the COVID-19 Open Research Dataset to assess the performance of the model. The results show that the proposed model performs significantly better than existing state-of-the-art models, thereby confirming the effectiveness of the proposed method for the discovery of new COVID-19 research approaches.

摘要

在抗击新冠疫情的过程中,主要挑战包括缺乏前期研究以及亟需找到有效的解决方案。准确、迅速地总结相关研究工作,并探索新冠病毒诊断、治疗和预防的潜在解决方案至关重要。总结众多现有研究工作并评估其有效性是一项艰巨的任务。本文探索基于动态链接预测发现新冠病毒新的研究方法,该方法分析关键词的动态拓扑网络以预测研究概念之间可能的联系。提出了一种基于多粒度特征融合的动态链接预测方法。首先,采用多粒度时间特征融合方法提取不同阶子图的时间演化。其次,提出一种层次特征加权方法以突出积极演化的节点。第三,设计一种语义重复采样机制,避免语义等效的医学实体对图的真实结构产生负面影响,并捕捉真实的拓扑结构特征。在新冠病毒开放研究数据集上进行实验以评估模型性能。结果表明,所提出的模型表现显著优于现有最先进模型,从而证实了所提方法在发现新冠病毒新研究方法方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验