Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114.
Broad Institute of MIT and Harvard, Cambridge, MA 02142.
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2207955119. doi: 10.1073/pnas.2207955119. Epub 2022 Oct 10.
Oxygen plays a key role in supporting life on our planet. It is particularly important in higher eukaryotes where it boosts bioenergetics as a thermodynamically favorable terminal electron acceptor and has important roles in cell signaling and development. Many human diseases stem from either insufficient or excessive oxygen. Despite its fundamental importance, we lack methods with which to manipulate the supply of oxygen with high spatiotemporal resolution in cells and in organisms. Here, we introduce a genetic system, SupplemeNtal Oxygen Released from ChLorite (SNORCL), for on-demand local generation of molecular oxygen in living cells, by harnessing prokaryotic chlorite O-lyase (Cld) enzymes that convert chlorite (ClO) into molecular oxygen (O) and chloride (Cl). We show that active Cld enzymes can be targeted to either the cytosol or mitochondria of human cells, and that coexpressing a chlorite transporter results in molecular oxygen production inside cells in response to externally added chlorite. This first-generation system allows fine temporal and spatial control of oxygen production, with immediate research applications. In the future, we anticipate that technologies based on SNORCL will have additional widespread applications in research, biotechnology, and medicine.
氧气在支持我们星球上的生命方面起着关键作用。在高等真核生物中,氧气尤为重要,因为它作为热力学有利的末端电子受体,促进生物能量学,并且在细胞信号转导和发育中具有重要作用。许多人类疾病要么源于氧气供应不足,要么源于氧气供应过量。尽管氧气至关重要,但我们缺乏方法来以高时空分辨率在细胞和生物体中操纵氧气的供应。在这里,我们引入了一种遗传系统,即通过利用原核亚氯酸 O-裂合酶 (Cld) 酶将亚氯酸 (ClO) 转化为分子氧 (O) 和氯离子 (Cl),按需在活细胞中局部产生分子氧的补充性氯酸盐释放 (SNORCL),从而实现这一目标。我们表明,活性 Cld 酶可以靶向人类细胞的细胞质或线粒体,并且共表达亚氯酸转运蛋白会导致细胞内产生分子氧,以响应外加的亚氯酸。这个第一代系统允许对氧气产生进行精细的时间和空间控制,具有即时的研究应用。将来,我们预计基于 SNORCL 的技术将在研究、生物技术和医学中有更多的广泛应用。