Suppr超能文献

基因工程间充质干细胞作为一氧化氮储库治疗急性肾损伤。

Genetically engineered mesenchymal stem cells as a nitric oxide reservoir for acute kidney injury therapy.

机构信息

Nankai University School of Medicine, Tianjin, China.

The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, the College of Life Sciences, Tianjin, China.

出版信息

Elife. 2023 Sep 11;12:e84820. doi: 10.7554/eLife.84820.

Abstract

Nitric oxide (NO), as a gaseous therapeutic agent, shows great potential for the treatment of many kinds of diseases. Although various NO delivery systems have emerged, the immunogenicity and long-term toxicity of artificial carriers hinder the potential clinical translation of these gas therapeutics. Mesenchymal stem cells (MSCs), with the capacities of self-renewal, differentiation, and low immunogenicity, have been used as living carriers. However, MSCs as gaseous signaling molecule (GSM) carriers have not been reported. In this study, human MSCs were genetically modified to produce mutant β-galactosidase (β-GAL). Furthermore, a new NO prodrug, 6-methyl-galactose-benzyl-oxy NONOate (MGP), was designed. MGP can enter cells and selectively trigger NO release from genetically engineered MSCs (eMSCs) in the presence of β-GAL. Moreover, our results revealed that eMSCs can release NO when MGP is systemically administered in a mouse model of acute kidney injury (AKI), which can achieve NO release in a precise spatiotemporal manner and augment the therapeutic efficiency of MSCs. This eMSC and NO prodrug system provides a unique and tunable platform for GSM delivery and holds promise for regenerative therapy by enhancing the therapeutic efficiency of stem cells.

摘要

一氧化氮(NO)作为一种气体治疗剂,在治疗多种疾病方面显示出巨大的潜力。尽管已经出现了各种 NO 传递系统,但人工载体的免疫原性和长期毒性阻碍了这些气体治疗剂的潜在临床转化。间充质干细胞(MSCs)具有自我更新、分化和低免疫原性的能力,已被用作活载体。然而,尚未有报道将 MSCs 用作气态信号分子(GSM)载体。在本研究中,通过基因修饰使人类 MSCs 产生突变型β-半乳糖苷酶(β-GAL)。此外,还设计了一种新型 NO 前药,6-甲基-半乳糖-苄氧基-NONO 酯(MGP)。MGP 可以进入细胞,并在存在β-GAL 的情况下从基因工程 MSCs(eMSCs)中选择性地触发 NO 释放。此外,我们的研究结果表明,当在急性肾损伤(AKI)小鼠模型中系统给予 MGP 时,eMSCs 可以释放 NO,从而可以精确地时空释放 NO,并提高 MSCs 的治疗效率。这种 eMSC 和 NO 前药系统为 GSM 传递提供了一个独特且可调的平台,并通过提高干细胞的治疗效率,为再生疗法带来了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e04/10541176/4bfb25b5c569/elife-84820-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验