Universitat Politecnica de Catalunya, Barcelona, Spain; Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine, Madrid, Spain; Institut de Recerca Sant Joan de Deu, Barcelona, Spain.
DAP-Cat Group, Unitat de Suport a la Recerca, Fundaciò Institut Universitari per a la recerca a l'Atenciò Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barelona, Spain.
J Biomed Inform. 2022 Nov;135:104218. doi: 10.1016/j.jbi.2022.104218. Epub 2022 Oct 8.
Type 2 diabetes mellitus (T2DM) is a highly heterogeneous chronic disease with different pathophysiological and genetic characteristics affecting its progression, associated complications and response to therapies. The advances in deep learning (DL) techniques and the availability of a large amount of healthcare data allow us to investigate T2DM characteristics and evolution with a completely new approach, studying common disease trajectories rather than cross sectional values. We used an Kernelized-AutoEncoder algorithm to map 5 years of data of 11,028 subjects diagnosed with T2DM in a latent space that embedded similarities and differences between patients in terms of the evolution of the disease. Once we obtained the latent space, we used classical clustering algorithms to create longitudinal clusters representing different evolutions of the diabetic disease. Our unsupervised DL clustering algorithm suggested seven different longitudinal clusters. Different mean ages were observed among the clusters (ranging from 65.3±11.6 to 72.8±9.4). Subjects in clusters B (Hypercholesteraemic) and E (Hypertensive) had shorter diabetes duration (9.2±3.9 and 9.5±3.9 years respectively). Subjects in Cluster G (Metabolic) had the poorest glycaemic control (mean glycated hemoglobin 7.99±1.42%), while cluster E had the best one (mean glycated hemoglobin 7.04±1.11%). Obesity was observed mainly in clusters A (Neuropathic), C (Multiple Complications), F (Retinopathy) and G. A dashboard is available at dm2.b2slab.upc.edu to visualize the different trajectories corresponding to the 7 clusters.
2 型糖尿病(T2DM)是一种高度异质性的慢性疾病,具有不同的病理生理和遗传特征,影响其进展、相关并发症和治疗反应。深度学习(DL)技术的进步和大量医疗保健数据的可用性使我们能够以全新的方式研究 T2DM 的特征和演变,研究常见的疾病轨迹,而不是横断面值。我们使用核自动编码器算法将 11028 名被诊断为 T2DM 的患者的 5 年数据映射到一个潜在空间中,该空间根据疾病的演变嵌入了患者之间的相似性和差异。一旦我们获得了潜在空间,我们就使用经典的聚类算法创建代表糖尿病不同演变的纵向聚类。我们的无监督深度学习聚类算法建议了七个不同的纵向聚类。在聚类中观察到不同的平均年龄(从 65.3±11.6 到 72.8±9.4)。聚类 B(高胆固醇血症)和 E(高血压)中的患者糖尿病病程较短(分别为 9.2±3.9 和 9.5±3.9 年)。聚类 G(代谢)中的患者血糖控制最差(糖化血红蛋白平均值为 7.99±1.42%),而聚类 E 的血糖控制最好(糖化血红蛋白平均值为 7.04±1.11%)。肥胖主要见于聚类 A(神经病)、C(多种并发症)、F(视网膜病变)和 G。可在 dm2.b2slab.upc.edu 上查看对应于 7 个聚类的不同轨迹的仪表板。