Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
Radiother Oncol. 2022 Nov;176:165-171. doi: 10.1016/j.radonc.2022.10.001. Epub 2022 Oct 7.
Online adaptive replanning (OLAR) is generally labor-intensive and time-consuming during MRI-guided adaptive radiation therapy (MRgART). This work aims to develop a method to determine OLAR necessity during MRgART.
A machine learning classifier was developed to predict OLAR necessity based on wavelet multiscale texture features extracted from daily MRIs and was trained and tested with data from 119 daily MRI datasets acquired during MRgART for 24 pancreatic cancer patients treated on a 1.5 T MR-Linac. Spearman correlations, interclass correlation (ICC), coefficient of variance (COV), t-test (p < 0.05), self-organized map (SOM) and maximum stable extremal region (MSER) algorithm were used to determine candidate features, which were used to build the prediction models using Bayesian classifiers. The model performance was judged using the AUC of the ROC curve.
Spearman correlation identified 123 features that were not redundant (r < 0.9). Of them 82 showed high ICC for repositioning > 0.6, 67 had a COV greater than 9% for OLAR. Among the 38 features passed the t-test, 25 passed the SOM and 12 passed the MSER. These final 12 features were used to build the classifier model. The combination of 2-3 features at a time was used to build the classifier models. The best performing model was a 3-feature combination, which can predict OLAR necessity with a CV-AUC of 0.98.
A machine learning classifier model based on the wavelet features extracted from daily MRI for pancreatic cancer was developed to automatically and objectively determine if OLAR is necessary for a treatment fraction avoiding unnecessary effort during MRgART.
在磁共振引导自适应放疗(MRgART)中,在线自适应计划(OLAR)通常是劳动密集型且耗时的。本研究旨在开发一种方法来确定 MRgART 期间进行 OLAR 的必要性。
基于从每日 MRI 中提取的小波多尺度纹理特征,开发了一种机器学习分类器来预测 OLAR 的必要性,并使用 24 例在 1.5T MR-Linac 上接受治疗的胰腺癌患者的 119 例每日 MRI 数据集进行了训练和测试。使用 Spearman 相关性、组内相关系数(ICC)、变异系数(COV)、t 检验(p<0.05)、自组织映射(SOM)和最大稳定极值区域(MSER)算法来确定候选特征,然后使用贝叶斯分类器构建预测模型。使用 ROC 曲线的 AUC 来判断模型性能。
Spearman 相关性确定了 123 个不冗余的特征(r<0.9)。其中 82 个特征的重新定位 ICC>0.6,67 个特征的 OLAR COV 大于 9%。在通过 t 检验的 38 个特征中,25 个通过了 SOM,12 个通过了 MSER。最终选择这 12 个特征用于构建分类器模型。分类器模型使用一次 2-3 个特征的组合进行构建。表现最佳的模型是一个 3 特征组合,可以以 0.98 的 CV-AUC 预测 OLAR 的必要性。
基于从胰腺癌每日 MRI 中提取的小波特征,开发了一种用于自动和客观确定治疗分次是否需要 OLAR 的机器学习分类器模型,从而避免在 MRgART 期间的不必要工作。