Zhang Ying, Paulson Eric, Lim Sara, Hall William A, Ahunbay Ergun, Mickevicius Nikolai J, Straza Michael W, Erickson Beth, Li X Allen
Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.
Adv Radiat Oncol. 2020 May 16;5(6):1350-1358. doi: 10.1016/j.adro.2020.04.027. eCollection 2020 Nov-Dec.
Magnetic resonance-guided online adaptive radiation therapy (MRgOART) requires accurate and efficient segmentation. However, the performance of current autosegmentation tools is generally poor for magnetic resonance imaging (MRI) owing to day-to-day variations in image intensity and patient anatomy. In this study, we propose a patient-specific autosegmentation strategy using multiple-input deformable image registration (DIR; PASSMID) to improve segmentation accuracy and efficiency for MRgOART.
Longitudinal MRI scans acquired on a 1.5T MRI-Linac for 10 patients with abdominal cancer were used. The proposed PASSMID includes 2 steps: applying a patient-specific image processing pipeline to longitudinal MRI scans, and populating all contours from previous sessions/fractions to a new fractional MRI using multiple DIRs and combining the resulted contours using simultaneous truth and performance level estimation (STAPLE) to obtain the final consensus segmentation. Five contour propagation strategies were compared: planning computed tomography to fractional MRI scans through rigid body registration (RDR), pretreatment MRI to fractional MRI scans through RDR and DIR, and the proposed multi-input DIR/STAPLE without preprocessing, and the PASSMID. Dice similarity coefficient (DSC) and mean distance to agreement (MDA) with ground truth contours were calculated slice by slice to quantify the contour accuracy. A quantitative index, defined as the ratio of acceptable slices, was introduced using a criterion of DSC > 0.8 and MDA < 2 mm.
The proposed PASSMID performed well with an average 2-dimensional DSC/MDA of 0.94/1.78 mm, 0.93/1.04 mm, 0.93/1.06 mm, 0.93/1.14 mm, 0.92/0.83 mm, 0.84/1.53 mm, 0.86/2.39 mm, 0.81/2.49 mm, 0.72/5.48 mm, and 0.70/5.03 mm for the liver, left kidney, right kidney, spleen, aorta, pancreas, stomach, duodenum, small bowel, and colon, respectively. Starting from the third fractions, the contour accuracy was significantly improved with PASSMID compared with the single-DIR strategy ( < .05). The mean ratio of acceptable slices were 13.9%, 17.5%, 60.8%, 70.6%, and 71.8% for the 5 strategies, respectively.
The proposed PASSMID solution, by combining image processing, multi-input DIRs, and STAPLE, can significantly improve the accuracy of autosegmentation for intrapatient MRI scans, reducing the time required for further contour editing, thereby facilitating the routine practice of MRgOART.
磁共振引导的在线自适应放射治疗(MRgOART)需要准确且高效的分割。然而,由于图像强度和患者解剖结构的日常变化,当前自动分割工具在磁共振成像(MRI)中的性能普遍较差。在本研究中,我们提出一种使用多输入可变形图像配准(DIR;PASSMID)的患者特异性自动分割策略,以提高MRgOART的分割准确性和效率。
使用在1.5T MRI直线加速器上为10例腹部癌患者采集的纵向MRI扫描数据。所提出的PASSMID包括两个步骤:对纵向MRI扫描应用患者特异性图像处理流程,以及使用多个DIR将先前疗程/分次的所有轮廓填充到新的分次MRI中,并使用同时真值和性能水平估计(STAPLE)合并所得轮廓以获得最终的一致性分割。比较了五种轮廓传播策略:通过刚体配准(RDR)将计划计算机断层扫描到分次MRI扫描,通过RDR和DIR将预处理MRI到分次MRI扫描,以及所提出的无需预处理的多输入DIR/STAPLE,和PASSMID。逐片计算与真实轮廓的骰子相似系数(DSC)和平均一致距离(MDA)以量化轮廓准确性。使用DSC>0.8和MDA<2mm的标准引入一个定义为可接受切片比例的定量指标。
所提出的PASSMID表现良好,肝脏、左肾、右肾、脾脏、主动脉、胰腺、胃、十二指肠、小肠和结肠的平均二维DSC/MDA分别为0.94/1.78mm、0.93/1.04mm、0.93/1.06mm、0.93/1.14mm、0.92/0.83mm、0.84/1.53mm、0.86/2.39mm、0.81/2.49mm、0.72/5.48mm和0.70/5.03mm。从第三个分次开始,与单DIR策略相比,PASSMID的轮廓准确性有显著提高(P<0.05)。五种策略的可接受切片平均比例分别为13.9%、17.5%、60.8%、70.6%和71.8%。
所提出 的PASSMID解决方案通过结合图像处理、多输入DIR和STAPLE,可以显著提高患者内MRI扫描自动分割的准确性,减少进一步轮廓编辑所需的时间,从而促进MRgOART的常规实践。