Suppr超能文献

均匀且各向同性的细胞骨架平铺充满树突棘。

A Uniform and Isotropic Cytoskeletal Tiling Fills Dendritic Spines.

机构信息

Faculty of Biology, Ludwig-Maximilians-Universität and Bernstein Center for Computational Neuroscience Munich, Munich, Planegg-Martinsried D-82152, Germany

Department of Neurosciences and National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, 92093 CA.

出版信息

eNeuro. 2022 Oct 27;9(5). doi: 10.1523/ENEURO.0342-22.2022. Print 2022 Sep-Oct.

Abstract

Dendritic spines are submicron, subcellular compartments whose shape is defined by actin filaments and associated proteins. Accurately mapping the cytoskeleton is a challenge, given the small size of its components. It remains unclear whether the actin-associated structures analyzed in dendritic spines of neurons apply to dendritic spines of intact, mature neurons Here, we combined advanced preparative methods with multitilt serial section electron microscopy (EM) tomography and computational analysis to reveal the full three-dimensional (3D) internal architecture of spines in the intact brains of male mice at nanometer resolution. We compared hippocampal (CA1) pyramidal cells and cerebellar Purkinje cells in terms of the length distribution and connectivity of filaments, their branching-angles and absolute orientations, and the elementary loops formed by the network. Despite differences in shape and size across spines and between spine heads and necks, the internal organization was remarkably similar in both neuron types and largely homogeneous throughout the spine volume. In the tortuous mesh of highly branched and interconnected filaments, branches exhibited no preferred orientation except in the immediate vicinity of the cell membrane. We found that new filaments preferentially split off from the convex side of a bending filament, consistent with the behavior of Arp2/3-mediated branching of actin under mechanical deformation. Based on the quantitative analysis, the spine cytoskeleton is likely subject to considerable mechanical force .

摘要

树突棘是亚微米级的、亚细胞的结构,其形状由肌动蛋白丝和相关蛋白决定。由于其组成成分较小,因此准确绘制细胞骨架是一项挑战。目前尚不清楚在神经元树突棘中分析的肌动蛋白相关结构是否适用于完整成熟神经元的树突棘。在这里,我们结合先进的预备方法和多倾斜位连续切片电子显微镜 (EM) 断层扫描和计算分析,以纳米分辨率揭示了雄性小鼠完整大脑中棘突的完整三维(3D)内部结构。我们比较了海马 (CA1) 锥体神经元和小脑浦肯野细胞,比较了纤维的长度分布和连接性、分支角度和绝对方向,以及由网络形成的基本环。尽管棘突之间以及棘突头部和颈部之间的形状和大小存在差异,但两种神经元类型的内部组织非常相似,并且在整个棘突体积中基本均匀。在高度分支和相互连接的纤维的曲折网中,分支除了在细胞膜附近外,没有优先方向。我们发现新的纤维优先从弯曲纤维的凸侧分支出来,这与机械变形下 Arp2/3 介导的肌动蛋白分支的行为一致。基于定量分析,棘突细胞骨架可能受到相当大的机械力的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ba1/9617608/8c2488702b7f/ENEURO.0342-22.2022_f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验