Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
Nat Commun. 2022 Oct 10;13(1):5986. doi: 10.1038/s41467-022-33483-7.
Enteroviruses are non-enveloped positive-sense RNA viruses that cause diverse diseases in humans. Their rapid multiplication depends on remodeling of cytoplasmic membranes for viral genome replication. It is unknown how virions assemble around these newly synthesized genomes and how they are then loaded into autophagic membranes for release through secretory autophagy. Here, we use cryo-electron tomography of infected cells to show that poliovirus assembles directly on replication membranes. Pharmacological untethering of capsids from membranes abrogates RNA encapsidation. Our data directly visualize a membrane-bound half-capsid as a prominent virion assembly intermediate. Assembly progression past this intermediate depends on the class III phosphatidylinositol 3-kinase VPS34, a key host-cell autophagy factor. On the other hand, the canonical autophagy initiator ULK1 is shown to restrict virion production since its inhibition leads to increased accumulation of virions in vast intracellular arrays, followed by an increased vesicular release at later time points. Finally, we identify multiple layers of selectivity in virus-induced autophagy, with a strong selection for RNA-loaded virions over empty capsids and the segregation of virions from other types of autophagosome contents. These findings provide an integrated structural framework for multiple stages of the poliovirus life cycle.
肠道病毒是无包膜的正链 RNA 病毒,可引起人类多种疾病。它们的快速繁殖依赖于细胞质膜的重塑,以进行病毒基因组复制。目前尚不清楚病毒粒子如何围绕这些新合成的基因组组装,以及它们如何被装载到自噬膜中,通过分泌自噬释放。在这里,我们使用感染细胞的冷冻电镜断层扫描来显示脊髓灰质炎病毒直接在复制膜上组装。通过药理学方法将衣壳与膜分离可破坏 RNA 包装。我们的数据直接可视化了一个膜结合的半衣壳作为一个突出的病毒组装中间体。组装过程越过这个中间体取决于 III 类磷脂酰肌醇 3-激酶 VPS34,这是一个关键的宿主细胞自噬因子。另一方面,经典的自噬起始因子 ULK1 被证明会限制病毒粒子的产生,因为其抑制会导致大量细胞内病毒粒子的积累,随后在稍后的时间点会增加囊泡释放。最后,我们确定了病毒诱导的自噬中的多种选择性,对负载 RNA 的病毒粒子有很强的选择性,而对空衣壳的选择性较弱,并且病毒粒子与其他类型的自噬体内容物分离。这些发现为脊髓灰质炎病毒生命周期的多个阶段提供了一个综合的结构框架。