School of Instrument and Electronics, North University of China, Taiyuan 030051, China.
Sensors (Basel). 2023 May 21;23(10):4940. doi: 10.3390/s23104940.
Wearable surface electromyography (sEMG) signal-acquisition devices have considerable potential for medical applications. Signals obtained from sEMG armbands can be used to identify a person's intentions using machine learning. However, the performance and recognition capabilities of commercially available sEMG armbands are generally limited. This paper presents the design of a wireless high-performance sEMG armband (hereinafter referred to as the α Armband), which has 16 channels and a 16-bit analog-to-digital converter and can reach 2000 samples per second per channel (adjustable) with a bandwidth of 0.1-20 kHz (adjustable). The α Armband can configure parameters and interact with sEMG data through low-power Bluetooth. We collected sEMG data from the forearms of 30 subjects using the α Armband and extracted three different image samples from the time-frequency domain for training and testing convolutional neural networks. The average recognition accuracy for 10 hand gestures was as high as 98.6%, indicating that the α Armband is highly practical and robust, with excellent development potential.
可穿戴表面肌电(sEMG)信号采集设备在医学应用方面具有很大的潜力。通过机器学习,可以使用来自 sEMG 臂带的信号来识别一个人的意图。然而,商用 sEMG 臂带的性能和识别能力通常受到限制。本文介绍了一种无线高性能 sEMG 臂带(以下简称α 臂带)的设计,该臂带有 16 个通道和 16 位模数转换器,每个通道每秒可达到 2000 个样本(可调节),带宽为 0.1-20 kHz(可调节)。α 臂带可以通过低功耗蓝牙配置参数并与 sEMG 数据交互。我们使用 α 臂带从 30 名受试者的前臂采集 sEMG 数据,并从时频域中提取三个不同的图像样本进行卷积神经网络的训练和测试。10 种手势的平均识别准确率高达 98.6%,表明 α 臂带具有很高的实用性和鲁棒性,具有极好的开发潜力。