Suppr超能文献

南加州空气污染差异的优化环境正义计算。

Optimized environmental justice calculations for air pollution disparities in Southern California.

作者信息

Li Yiting, Kumar Anikender, Hamilton Sofia, Lea Jeremy D, Harvey John, Kleeman Michael J

机构信息

Department of Land, Air, and Water Resources, University of California, Davis, CA, USA.

Department of Civil and Environmental Engineering, University of California, Davis, CA, USA.

出版信息

Heliyon. 2022 Sep 26;8(10):e10732. doi: 10.1016/j.heliyon.2022.e10732. eCollection 2022 Oct.

Abstract

An Environmental Justice (EJ) analysis was carried out using full Chemical Transport Models (CTMs) over Los Angeles, California, to determine how the combination of domain size and spatial resolution affects predicted air pollution disparities in present day and future simulations when data support from measurements is not available. One set of simulations used the Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF/Chem) with spatial resolution ranging from 250 m to 36 km, comparable to census tract sizes, over domains ranging in size from 320 km to 10,000 km. A second set of simulations used the UCD/CIT CTM with spatial resolution ranging from 4 km to 24 km over domains ranging in size from 98,000 km to 1,000,000 km. Overall WRF/Chem model accuracy improved approximately 9% as spatial resolution increased from 4 km to 250 m in present-day simulations, with similar results expected for future simulations. Exposure disparity results are consistent with previous findings: the average Non-Hispanic White person in the study domain experiences PM mass concentrations 6-14% lower than the average resident, while the average Black and African American person experiences PM mass concentrations that are 3-22% higher than the average resident. Predicted exposure disparities were a function of the model configuration. Increasing the spatial resolution finer than approximately 1 km produced diminishing returns because the increased spatial resolution came at the expense of reduced domain size in order to maintain reasonable computational burden. Increasing domain size to capture regional trends, such as wealthier populations living in coastal areas, identified larger exposure disparities but the benefits were limited. CTM configurations that use spatial resolution/domain size of 1 km/10 km and 4 km/10 km over Los Angeles can detect a 0.5 μg m exposure difference with statistical power greater than 90%. These configurations represent a balanced approach between statistical power, sensitivity across socio-economic groups, and computational burden when predicting current and future air pollution exposure disparities in Los Angeles.

摘要

利用完整的化学传输模型(CTM)对加利福尼亚州洛杉矶进行了环境正义(EJ)分析,以确定在缺乏测量数据支持的情况下,区域大小和空间分辨率的组合如何影响当前和未来模拟中预测的空气污染差异。一组模拟使用了天气研究和预报(WRF)模型与化学模型(WRF/Chem)耦合,空间分辨率范围从250米到36公里,与人口普查区大小相当,区域范围从320公里到10000公里。第二组模拟使用了UCD/CIT CTM,空间分辨率范围从4公里到24公里,区域范围从98000公里到1000000公里。在当前模拟中,随着空间分辨率从4公里增加到250米,WRF/Chem模型的总体精度提高了约9%,预计未来模拟也会有类似结果。暴露差异结果与先前的研究结果一致:研究区域内非西班牙裔白人的平均PM质量浓度比平均居民低6%-14%,而黑人和非裔美国人的平均PM质量浓度比平均居民高3%-22%。预测的暴露差异是模型配置的函数。将空间分辨率提高到约1公里以上会产生递减的回报,因为提高空间分辨率是以减小区域大小为代价的,以维持合理的计算负担。增加区域大小以捕捉区域趋势,如沿海地区居住的较富裕人群,发现了更大的暴露差异,但好处有限。在洛杉矶使用1公里/10公里和4公里/10公里的空间分辨率/区域大小的CTM配置,可以检测到0.5微克/立方米的暴露差异,统计功效大于90%。这些配置代表了在预测洛杉矶当前和未来空气污染暴露差异时,在统计功效、跨社会经济群体的敏感性和计算负担之间的一种平衡方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e6f/9547217/0427c2ce2331/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验