Suppr超能文献

在秘鲁利马开发一种先进的颗粒物暴露模型。

Developing an Advanced PM Exposure Model in Lima, Peru.

作者信息

Vu Bryan N, Sánchez Odón, Bi Jianzhao, Xiao Qingyang, Hansel Nadia N, Checkley William, Gonzales Gustavo F, Steenland Kyle, Liu Yang

机构信息

Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.

Carrera Profesional de Ingeniería Ambiental, Universidad Nacional Tecnológica de Lima Sur (UNTELS), cruce Av. Central y Av. Bolivar, Villa El Salvador, Lima 15102, Peru.

出版信息

Remote Sens (Basel). 2019 Mar 2;11(6). doi: 10.3390/rs11060641. Epub 2019 Mar 16.

Abstract

It is well recognized that exposure to fine particulate matter (PM) affects health adversely, yet few studies from South America have documented such associations due to the sparsity of PM measurements. Lima's topography and aging vehicular fleet results in severe air pollution with limited amounts of monitors to effectively quantify PM levels for epidemiologic studies. We developed an advanced machine learning model to estimate daily PM concentrations at a 1 km spatial resolution in Lima, Peru from 2010 to 2016. We combined aerosol optical depth (AOD), meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF), parameters from the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), and land use variables to fit a random forest model against ground measurements from 16 monitoring stations. Overall cross-validation R (and root mean square prediction error, RMSE) for the random forest model was 0.70 (5.97 μg/m). Mean PM for ground measurements was 24.7 μg/m while mean estimated PM was 24.9 μg/m in the cross-validation dataset. The mean difference between ground and predicted measurements was -0.09 μg/m (Std.Dev. = 5.97 μg/m), with 94.5% of observations falling within 2 standard deviations of the difference indicating good agreement between ground measurements and predicted estimates. Surface downwards solar radiation, temperature, relative humidity, and AOD were the most important predictors, while percent urbanization, albedo, and cloud fraction were the least important predictors. Comparison of monthly mean measurements between ground and predicted PM shows good precision and accuracy from our model. Furthermore, mean annual maps of PM show consistent lower concentrations in the coast and higher concentrations in the mountains, resulting from prevailing coastal winds blown from the Pacific Ocean in the west. Our model allows for construction of long-term historical daily PM measurements at 1 km spatial resolution to support future epidemiological studies.

摘要

众所周知,暴露于细颗粒物(PM)会对健康产生不利影响,但由于PM测量数据稀少,南美洲很少有研究记录此类关联。利马的地形和老旧的车辆导致空气污染严重,用于有效量化PM水平以进行流行病学研究的监测器数量有限。我们开发了一种先进的机器学习模型,以估计2010年至2016年秘鲁利马1公里空间分辨率下的每日PM浓度。我们结合了气溶胶光学厚度(AOD)、欧洲中期天气预报中心(ECMWF)的气象场、天气研究与预报模型与化学耦合(WRF-Chem)的参数以及土地利用变量,以针对16个监测站的地面测量数据拟合随机森林模型。随机森林模型的总体交叉验证R(和均方根预测误差,RMSE)为0.70(5.97μg/m)。交叉验证数据集中地面测量的平均PM为24.7μg/m,而估计的平均PM为24.9μg/m。地面测量与预测测量之间的平均差异为-0.09μg/m(标准差=5.97μg/m),94.5%的观测值落在差异的2个标准差范围内,表明地面测量与预测估计之间具有良好的一致性。地表向下太阳辐射、温度、相对湿度和AOD是最重要的预测因子,而城市化百分比、反照率和云量分数是最不重要的预测因子。地面与预测PM之间的月平均测量值比较显示,我们的模型具有良好的精度和准确性。此外,PM的年平均地图显示,由于西部太平洋吹来的盛行沿海风,沿海地区的浓度持续较低,山区的浓度较高。我们的模型允许构建1公里空间分辨率的长期历史每日PM测量数据,以支持未来的流行病学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f826/6671674/dba5e8fd07bf/nihms-1033584-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验