Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States.
Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States.
ACS Synth Biol. 2022 Oct 21;11(10):3405-3413. doi: 10.1021/acssynbio.2c00323. Epub 2022 Oct 11.
Carbon-neutral production of valuable bioproducts is critical to sustainable development but remains limited by the slow engineering of photosynthetic organisms. Improving existing synthetic biology tools to engineer model organisms to fix carbon dioxide is one route to overcoming the limitations of photosynthetic organisms. In this work, we describe a pipeline that enabled the deletion of a conditionally essential gene from the MR-1 genome. is a simple bacterial host that could be used for electricity-driven conversion of carbon dioxide in the future with further genetic engineering. We used Flux Balance Analysis (FBA) to model carbon and energy flows in central metabolism and assess the effects of single and double gene deletions. We modeled the growth of deletion strains under several alternative conditions to identify substrates that restore viability to an otherwise lethal gene knockout. These predictions were tested using a Mobile-CRISPRi gene knockdown system. The information learned from FBA and knockdown experiments informed our strategy for gene deletion, allowing us to successfully delete an "expected essential" gene, . FBA predicted, knockdown experiments supported, and deletion confirmed that the "essential" gene is not needed for survival, dependent on the medium used. Removal of is a first step toward driving electrode-powered CO fixation via RuBisCO. This work demonstrates the potential for broadening the scope of genetic engineering in as a synthetic biology chassis. By combining computational analysis with a CRISPRi knockdown system in this way, one can systematically assess the impact of conditionally essential genes and use this knowledge to generate mutations previously thought unachievable.
生产有价值的生物制品而不产生碳排放,对可持续发展至关重要,但目前仍受到光合生物工程缓慢的限制。改进现有的合成生物学工具,以对模式生物进行工程改造以固定二氧化碳,是克服光合生物局限性的一种途径。在这项工作中,我们描述了一个从 MR-1 基因组中删除条件必需基因的方法。 是一种简单的细菌宿主,在未来通过进一步的基因工程,可以用于电力驱动的二氧化碳转化。我们使用通量平衡分析(FBA)来模拟中心代谢中的碳和能量流动,并评估单基因和双基因缺失的影响。我们根据几种替代条件来模拟缺失菌株的生长,以确定能够使本来致命的基因敲除恢复活力的底物。我们使用 Mobile-CRISPRi 基因敲低系统对这些预测进行了测试。从 FBA 和敲低实验中获得的信息为我们的基因删除策略提供了信息,使我们能够成功删除一个“预期必需”基因 。FBA 预测,敲低实验支持,并且删除证实了“必需”基因 对于生存不是必需的,这取决于所使用的培养基。去除 是通过 RuBisCO 进行电极供电 CO 固定的第一步。这项工作展示了在 中扩展遗传工程范围的潜力,使其成为合成生物学底盘。通过这种方式将计算分析与 CRISPRi 敲低系统结合使用,可以系统地评估条件必需基因的影响,并利用这些知识生成以前认为无法实现的突变。