Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel.
Cell. 2019 Nov 27;179(6):1255-1263.e12. doi: 10.1016/j.cell.2019.11.009.
The living world is largely divided into autotrophs that convert CO into biomass and heterotrophs that consume organic compounds. In spite of widespread interest in renewable energy storage and more sustainable food production, the engineering of industrially relevant heterotrophic model organisms to use CO as their sole carbon source has so far remained an outstanding challenge. Here, we report the achievement of this transformation on laboratory timescales. We constructed and evolved Escherichia coli to produce all its biomass carbon from CO. Reducing power and energy, but not carbon, are supplied via the one-carbon molecule formate, which can be produced electrochemically. Rubisco and phosphoribulokinase were co-expressed with formate dehydrogenase to enable CO fixation and reduction via the Calvin-Benson-Bassham cycle. Autotrophic growth was achieved following several months of continuous laboratory evolution in a chemostat under intensifying organic carbon limitation and confirmed via isotopic labeling.
生命世界主要分为能够将 CO2 转化为生物质的自养生物和消耗有机化合物的异养生物。尽管人们对可再生能源储存和更可持续的食物生产有着广泛的兴趣,但迄今为止,将具有工业相关性的异养模式生物工程化,使其能够将 CO2 作为其唯一的碳源,仍然是一个悬而未决的挑战。在这里,我们报告了在实验室时间尺度上实现这一转变的成果。我们构建并进化了大肠杆菌,使其能够完全从 CO2 中生产所有的生物质碳。通过电化学产生的一碳分子甲酸盐来提供还原力和能量,但不提供碳。Rubisco 和磷酸核糖激酶与甲酸脱氢酶共表达,从而通过卡尔文-本森-巴斯汉姆循环实现 CO2 的固定和还原。在强化的有机碳限制下,经过几个月的连续实验室进化,在恒化器中实现了自养生长,并通过同位素标记得到了证实。