Suppr超能文献

基于机器学习的临床化学样本周转时间预测。

Turnaround time prediction for clinical chemistry samples using machine learning.

机构信息

Center for Healthcare Operations Improvement and Research (CHOIR), University of Twente, Enschede, The Netherlands.

Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.

出版信息

Clin Chem Lab Med. 2022 Oct 12;60(12):1902-1910. doi: 10.1515/cclm-2022-0668. Print 2022 Nov 25.

Abstract

OBJECTIVES

Turnaround time (TAT) is an essential performance indicator of a medical diagnostic laboratory. Accurate TAT prediction is crucial for taking timely action in case of prolonged TAT and is important for efficient organization of healthcare. The objective was to develop a model to accurately predict TAT, focusing on the automated pre-analytical and analytical phase.

METHODS

A total of 90,543 clinical chemistry samples from Erasmus MC were included and 39 features were analyzed, including priority level and workload in the different stages upon sample arrival. PyCaret was used to evaluate and compare multiple regression models, including the Extra Trees (ET) Regressor, Ridge Regression and K Neighbors Regressor, to determine the best model for TAT prediction. The relative residual and SHAP (SHapley Additive exPlanations) values were plotted for model evaluation.

RESULTS

The regression-tree-based method ET Regressor performed best with an R of 0.63, a mean absolute error of 2.42 min and a mean absolute percentage error of 7.35%, where the average TAT was 30.09 min. Of the test set samples, 77% had a relative residual error of at most 10%. SHAP value analysis indicated that TAT was mainly influenced by the workload in pre-analysis upon sample arrival and the number of modules visited.

CONCLUSIONS

Accurate TAT predictions were attained with the ET Regressor and features with the biggest impact on TAT were identified, enabling the laboratory to take timely action in case of prolonged TAT and helping healthcare providers to improve planning of scarce resources to increase healthcare efficiency.

摘要

目的

周转时间(TAT)是医学诊断实验室的一个重要绩效指标。准确预测 TAT 对于在 TAT 延长的情况下及时采取行动至关重要,对于高效组织医疗保健也很重要。目的是开发一个模型来准确预测 TAT,重点关注自动化的预分析和分析阶段。

方法

共纳入了来自伊拉斯谟医学中心的 90543 个临床化学样本,并分析了 39 个特征,包括样本到达时不同阶段的优先级水平和工作量。使用 PyCaret 评估和比较了多个回归模型,包括 Extra Trees (ET) 回归器、岭回归和 K 近邻回归器,以确定用于 TAT 预测的最佳模型。为了进行模型评估,绘制了相对残差和 SHAP(Shapley Additive exPlanations)值。

结果

基于回归树的方法 ET 回归器表现最好,R 值为 0.63,平均绝对误差为 2.42 分钟,平均绝对百分比误差为 7.35%,平均 TAT 为 30.09 分钟。在测试集样本中,77%的相对残差误差不超过 10%。SHAP 值分析表明,TAT 主要受样本到达时预分析中的工作量和访问的模块数量的影响。

结论

通过 ET 回归器实现了准确的 TAT 预测,并确定了对 TAT 影响最大的特征,使实验室能够在 TAT 延长的情况下及时采取行动,并帮助医疗保健提供者更好地规划稀缺资源,提高医疗保健效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验