Suppr超能文献

利用机器学习改善南非外科手术患者的再入院风险

Using Machine Learning to Improve Readmission Risk in Surgical Patients in South Africa.

作者信息

Tokac Umit, Chipps Jennifer, Brysiewicz Petra, Bruce John, Clarke Damian

机构信息

College of Nursing, University of Missouri-St. Louis, St. Louis, MO 63121, USA.

School of Nursing, Faculty of Community Health Sciences, University of Western Cape, Cape Town 7530, South Africa.

出版信息

Int J Environ Res Public Health. 2025 Feb 26;22(3):345. doi: 10.3390/ijerph22030345.

Abstract

Unplanned readmission within 30 days is a major challenge both globally and in South Africa. The aim of this study was to develop a machine learning model to predict unplanned surgical and trauma readmission to a public hospital in South Africa from unstructured text data. A retrospective cohort of records of patients was subjected to random forest analysis, using natural language processing and sentiment analysis to deal with data in free text in an electronic registry. Our findings were within the range of global studies, with reported AUC values between 0.54 and 0.92. For trauma unplanned readmissions, the discharge plan score was the most important predictor in the model, and for surgical unplanned readmissions, the problem score was the most important predictor in the model. The use of machine learning and natural language processing improved the accuracy of predicting readmissions.

摘要

30天内的非计划再入院在全球和南非都是一项重大挑战。本研究的目的是开发一种机器学习模型,以根据非结构化文本数据预测南非一家公立医院的非计划手术和创伤再入院情况。对患者记录的回顾性队列进行随机森林分析,使用自然语言处理和情感分析来处理电子登记册中的自由文本数据。我们的研究结果在全球研究范围内,报告的AUC值在0.54至0.92之间。对于创伤性非计划再入院,出院计划评分是模型中最重要的预测因素;对于手术性非计划再入院,问题评分是模型中最重要的预测因素。机器学习和自然语言处理的使用提高了再入院预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7e8/11942159/4b41e40d5eca/ijerph-22-00345-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验