Italian Institute of Technology, Genova16152, Italy.
Department of Chemistry, Stanford University, Stanford, California94305, United States.
J Am Chem Soc. 2022 Oct 26;144(42):19265-19271. doi: 10.1021/jacs.2c04419. Epub 2022 Oct 12.
Advances in the evolving field of atomistic simulations promise important insights for the design and fundamental understanding of novel molecular photoswitches. Here, we use state-of-the-art enhanced simulation techniques to unravel the complex, multistep chemistry of donor-acceptor Stenhouse adducts (DASAs). Our reaction discovery workflow consists of enhanced sampling for efficient chemical space exploration, refinement of newly observed pathways with more accurate electronic structure calculations, and structural modifications to introduce design principles within future generations of DASAs. We showcase our discovery workflow by not only recovering the full photoswitching mechanism of DASA but also predicting a plethora of new plausible thermal pathways and suggesting a way for their experimental validation. Furthermore, we illustrate the tunability of these newly discovered reactions, leading to a potential avenue for controlling DASA dynamics through multiple external stimuli. Overall, these insights could offer alternative routes to increase the efficiency and control of DASA's photoswitching mechanism, providing new elements to design more complex light-responsive materials.
原子模拟这一不断发展的领域的进展有望为新型分子光开关的设计和基础理解提供重要的见解。在这里,我们使用最先进的增强模拟技术来揭示给体-受体 Sten豪斯加合物(DASAs)的复杂多步化学。我们的反应发现工作流程包括增强采样以有效探索化学空间,使用更准确的电子结构计算来细化新观察到的途径,以及进行结构修改以在未来几代 DASAs 中引入设计原则。我们通过不仅恢复 DASA 的全光开关机制,而且预测大量新的合理热途径,并提出一种实验验证的方法来展示我们的发现工作流程。此外,我们说明了这些新发现反应的可调变性,为通过多种外部刺激控制 DASA 动力学提供了潜在途径。总的来说,这些见解可以提供增加 DASA 光开关机制效率和控制的替代途径,为设计更复杂的光响应材料提供新的元素。