Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
Alzheimers Dement. 2023 May;19(5):2069-2083. doi: 10.1002/alz.12812. Epub 2022 Oct 12.
Mitochondrial dysfunction is an early and prominent feature of Alzheimer's disease (AD), with impaired energy metabolism preceding the onset of clinical symptoms. Here we propose an update to the mitochondrial dysfunction hypothesis of AD based on recent results examining the role of mitochondrial genome abundance in AD. In a large post mortem study, we show that lower brain mitochondrial genome abundance is associated with a greater odds of AD neuropathological change and worse cognitive performance. We hypothesize that lower mitochondrial genome abundance impairs mitochondrial function by reducing mitochondrial bioenergetics, thereby impacting neuronal and glial cell function. However, it remains to be determined if mitochondrial dysfunction causes, mediates, or is a by-product of AD pathogenesis. Additional support for this hypothesis will be generated by linking peripheral blood mitochondrial genome abundance to AD and establishing clinical trials of compounds that upregulate total mitochondrial genome abundance or boost mitochondrial mass.
线粒体功能障碍是阿尔茨海默病(AD)的早期和突出特征,能量代谢受损先于临床症状出现。在此,我们根据最近研究检查线粒体基因组丰度在 AD 中的作用的结果,提出 AD 的线粒体功能障碍假说的更新。在一项大型死后研究中,我们表明大脑中线粒体基因组丰度较低与 AD 神经病理学改变的可能性更大和认知表现更差相关。我们假设较低的线粒体基因组丰度通过降低线粒体生物能学来损害线粒体功能,从而影响神经元和神经胶质细胞的功能。然而,线粒体功能障碍是否是 AD 发病机制的原因、中介或副产品仍有待确定。通过将外周血线粒体基因组丰度与 AD 相关联,并建立上调总线粒体基因组丰度或增加线粒体质量的化合物的临床试验,将为这一假说提供更多支持。