Science for Life Laboratory, 172 21, Solna, Sweden.
Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden.
Nat Commun. 2022 Oct 12;13(1):6028. doi: 10.1038/s41467-022-33729-4.
AlphaFold can predict the structure of single- and multiple-chain proteins with very high accuracy. However, the accuracy decreases with the number of chains, and the available GPU memory limits the size of protein complexes which can be predicted. Here we show that one can predict the structure of large complexes starting from predictions of subcomponents. We assemble 91 out of 175 complexes with 10-30 chains from predicted subcomponents using Monte Carlo tree search, with a median TM-score of 0.51. There are 30 highly accurate complexes (TM-score ≥0.8, 33% of complete assemblies). We create a scoring function, mpDockQ, that can distinguish if assemblies are complete and predict their accuracy. We find that complexes containing symmetry are accurately assembled, while asymmetrical complexes remain challenging. The method is freely available and accesible as a Colab notebook https://colab.research.google.com/github/patrickbryant1/MoLPC/blob/master/MoLPC.ipynb .
AlphaFold 可以非常准确地预测单链和多链蛋白质的结构。然而,随着链数的增加,准确性会降低,并且可用的 GPU 内存限制了可以预测的蛋白质复合物的大小。在这里,我们展示了一种可以从预测的亚基开始预测大型复合物结构的方法。我们使用蒙特卡罗树搜索从预测的亚基组装了 175 个复合物中的 91 个,这些复合物有 10-30 个链,中位数 TM 分数为 0.51。其中有 30 个高度准确的复合物(TM 分数≥0.8,占完整组装复合物的 33%)。我们创建了一个评分函数 mpDockQ,可以区分组装是否完整,并预测其准确性。我们发现含有对称性的复合物可以被准确地组装,而不对称的复合物仍然具有挑战性。该方法是免费提供的,可以在 Colab 笔记本中访问 https://colab.research.google.com/github/patrickbryant1/MoLPC/blob/master/MoLPC.ipynb。