European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
Science for Life Laboratory, Stockholm University, Solna, Sweden.
Nat Struct Mol Biol. 2023 Feb;30(2):216-225. doi: 10.1038/s41594-022-00910-8. Epub 2023 Jan 23.
Cellular functions are governed by molecular machines that assemble through protein-protein interactions. Their atomic details are critical to studying their molecular mechanisms. However, fewer than 5% of hundreds of thousands of human protein interactions have been structurally characterized. Here we test the potential and limitations of recent progress in deep-learning methods using AlphaFold2 to predict structures for 65,484 human protein interactions. We show that experiments can orthogonally confirm higher-confidence models. We identify 3,137 high-confidence models, of which 1,371 have no homology to a known structure. We identify interface residues harboring disease mutations, suggesting potential mechanisms for pathogenic variants. Groups of interface phosphorylation sites show patterns of co-regulation across conditions, suggestive of coordinated tuning of multiple protein interactions as signaling responses. Finally, we provide examples of how the predicted binary complexes can be used to build larger assemblies helping to expand our understanding of human cell biology.
细胞功能受组装通过蛋白质-蛋白质相互作用的分子机器控制。了解它们的原子细节对于研究它们的分子机制至关重要。然而,数以十万计的人类蛋白质相互作用中只有不到 5%的结构特征得到了描述。在这里,我们使用 AlphaFold2 测试了深度学习方法的潜力和局限性,以预测 65484 个人类蛋白质相互作用的结构。我们表明,实验可以正交地确认更高置信度的模型。我们确定了 3137 个高置信度的模型,其中 1371 个与已知结构没有同源性。我们确定了含有疾病突变的界面残基,这表明了潜在的致病变体机制。界面磷酸化位点组显示出跨条件的共同调节模式,表明作为信号反应的多个蛋白质相互作用的协调调整。最后,我们提供了一些示例,说明如何使用预测的二进制复合物来构建更大的组装体,从而帮助我们扩大对人类细胞生物学的理解。
Nat Struct Mol Biol. 2023-2
Nat Biotechnol. 2012-1-15
Biochem Biophys Res Commun. 2013-10-1
PLoS Comput Biol. 2009-12-11
Methods Mol Biol. 2015
Nat Biotechnol. 2025-7-25
Nat Commun. 2022-3-10
Nature. 2020-4-8
Proc Natl Acad Sci U S A. 2020-1-27