文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

构建具有结构解析的人类蛋白质相互作用网络

Towards a structurally resolved human protein interaction network.

机构信息

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.

Science for Life Laboratory, Stockholm University, Solna, Sweden.

出版信息

Nat Struct Mol Biol. 2023 Feb;30(2):216-225. doi: 10.1038/s41594-022-00910-8. Epub 2023 Jan 23.


DOI:10.1038/s41594-022-00910-8
PMID:36690744
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9935395/
Abstract

Cellular functions are governed by molecular machines that assemble through protein-protein interactions. Their atomic details are critical to studying their molecular mechanisms. However, fewer than 5% of hundreds of thousands of human protein interactions have been structurally characterized. Here we test the potential and limitations of recent progress in deep-learning methods using AlphaFold2 to predict structures for 65,484 human protein interactions. We show that experiments can orthogonally confirm higher-confidence models. We identify 3,137 high-confidence models, of which 1,371 have no homology to a known structure. We identify interface residues harboring disease mutations, suggesting potential mechanisms for pathogenic variants. Groups of interface phosphorylation sites show patterns of co-regulation across conditions, suggestive of coordinated tuning of multiple protein interactions as signaling responses. Finally, we provide examples of how the predicted binary complexes can be used to build larger assemblies helping to expand our understanding of human cell biology.

摘要

细胞功能受组装通过蛋白质-蛋白质相互作用的分子机器控制。了解它们的原子细节对于研究它们的分子机制至关重要。然而,数以十万计的人类蛋白质相互作用中只有不到 5%的结构特征得到了描述。在这里,我们使用 AlphaFold2 测试了深度学习方法的潜力和局限性,以预测 65484 个人类蛋白质相互作用的结构。我们表明,实验可以正交地确认更高置信度的模型。我们确定了 3137 个高置信度的模型,其中 1371 个与已知结构没有同源性。我们确定了含有疾病突变的界面残基,这表明了潜在的致病变体机制。界面磷酸化位点组显示出跨条件的共同调节模式,表明作为信号反应的多个蛋白质相互作用的协调调整。最后,我们提供了一些示例,说明如何使用预测的二进制复合物来构建更大的组装体,从而帮助我们扩大对人类细胞生物学的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/591e083e7a07/41594_2022_910_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/c61ee1b60470/41594_2022_910_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/2b6ddde8cdc2/41594_2022_910_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/466f6c9a0983/41594_2022_910_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/8b207b1835ea/41594_2022_910_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/4ee45f49656f/41594_2022_910_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/591e083e7a07/41594_2022_910_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/c61ee1b60470/41594_2022_910_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/2b6ddde8cdc2/41594_2022_910_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/466f6c9a0983/41594_2022_910_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/8b207b1835ea/41594_2022_910_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/4ee45f49656f/41594_2022_910_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4868/9935395/591e083e7a07/41594_2022_910_Fig6_HTML.jpg

相似文献

[1]
Towards a structurally resolved human protein interaction network.

Nat Struct Mol Biol. 2023-2

[2]
Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria.

Elife. 2022-12-28

[3]
Three-dimensional reconstruction of protein networks provides insight into human genetic disease.

Nat Biotechnol. 2012-1-15

[4]
Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.

PLoS One. 2016-4-4

[5]
Prediction of regulation relationship between protein interactions in signaling networks.

Biochem Biophys Res Commun. 2013-10-1

[6]
Elucidating common structural features of human pathogenic variations using large-scale atomic-resolution protein networks.

Hum Mutat. 2014-5

[7]
Identifying mutation specific cancer pathways using a structurally resolved protein interaction network.

Pac Symp Biocomput. 2015

[8]
Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks.

BMC Syst Biol. 2012-5-1

[9]
Human cancer protein-protein interaction network: a structural perspective.

PLoS Comput Biol. 2009-12-11

[10]
Computational phosphorylation network reconstruction: methods and resources.

Methods Mol Biol. 2015

引用本文的文献

[1]
A predicted structural interactome reveals binding interference from intrinsically disordered regions.

bioRxiv. 2025-8-20

[2]
Critical node detection in temporal social networks, based on global and semi-local centrality measures.

PLoS One. 2025-8-26

[3]
Decoding phospho-regulation and flanking regions in autophagy-associated short linear motifs.

Commun Biol. 2025-8-20

[4]
A Naturally Occurring Urinary Collagen Type I Alpha 1-Derived Peptide Inhibits Collagen Type I-Induced Endothelial Cell Migration at Physiological Concentrations.

Int J Mol Sci. 2025-8-2

[5]
Mapping the Architecture of Protein Complexes in Using Cross-Linking Mass Spectrometry.

bioRxiv. 2025-7-21

[6]
DirectContacts2: A network of direct physical protein interactions derived from high-throughput mass spectrometry experiments.

bioRxiv. 2025-7-28

[7]
Prediction of protein-protein interaction based on interaction-specific learning and hierarchical information.

BMC Biol. 2025-8-4

[8]
Translation efficiency covariation identifies conserved coordination patterns across cell types.

Nat Biotechnol. 2025-7-25

[9]
AlphaFold models of host-pathogen interactions elucidate the prevalence and structural modes of molecular mimicry.

bioRxiv. 2025-6-6

[10]
Human protein interactome structure prediction at scale with Boltz-2.

bioRxiv. 2025-7-3

本文引用的文献

[1]
Improved prediction of protein-protein interactions using AlphaFold2.

Nat Commun. 2022-3-10

[2]
The human GID complex engages two independent modules for substrate recruitment.

EMBO Rep. 2021-11-4

[3]
Accurate prediction of protein structures and interactions using a three-track neural network.

Science. 2021-8-20

[4]
Highly accurate protein structure prediction with AlphaFold.

Nature. 2021-8

[5]
hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies.

Mol Syst Biol. 2021-5

[6]
Large-scale discovery of protein interactions at residue resolution using co-evolution calculated from genomic sequences.

Nat Commun. 2021-3-2

[7]
RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences.

Nucleic Acids Res. 2021-1-8

[8]
INTS10-INTS13-INTS14 form a functional module of Integrator that binds nucleic acids and the cleavage module.

Nat Commun. 2020-7-9

[9]
A reference map of the human binary protein interactome.

Nature. 2020-4-8

[10]
A precisely positioned MED12 activation helix stimulates CDK8 kinase activity.

Proc Natl Acad Sci U S A. 2020-1-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索