Suppr超能文献

基于神经网络的代谢组学通路分析的机器学习方法

Machine Learning Using Neural Networks for Metabolomic Pathway Analyses.

机构信息

Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Victoria, Malta.

Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.

出版信息

Methods Mol Biol. 2023;2553:395-415. doi: 10.1007/978-1-0716-2617-7_17.

Abstract

Elucidating the mechanisms of metabolic pathways helps us understand the cascade of enzyme-catalyzed reactions that lead to the conversion of substances into final products. This has implications for predicting how newly synthesized compounds will affect a person's metabolism and, hence, the development of novel treatments to improve one's health. The study of metabolomic pathways, together with protein engineering, may also aid in the extraction, at a scale, of natural products to be used as drugs and drug precursors. Several approaches have been used to correlate protein annotations to metabolic pathways in order to derive pathways directly related to specific organisms. These could range from association rule-mining techniques to machine learning methods such as decision trees, naïve Bayes, logistic regression, and ensemble methods.In this chapter, we will be reviewing the use of machine learning for metabolic pathway analyses, with a step-by-step focus on the use of deep learning to predict the association of compounds (metabolites) to their respective metabolomic pathway classes. This prediction could help explain interactions of small molecules in organisms. Inspired by the work of Baranwal et al. (2019), we demonstrate how to build and train a deep learning neural network model to perform a multi-label prediction. We considered two different types of fingerprints as features (inputs to the model). The output of the model is the set of metabolic pathway classes (from the KEGG dataset) in which the input molecule participates. We will walk through the various steps of this process, including data collection, feature engineering, model selection, training, and evaluation. This model-building and evaluation process may be easily transferred to other domains of interest. All the source code used in this chapter is made publicly available at https://github.com/jp-um/machine_learning_for_metabolomic_pathway_analyses .

摘要

阐明代谢途径的机制有助于我们了解酶促反应的级联反应,这些反应导致物质转化为最终产物。这对于预测新合成的化合物将如何影响一个人的新陈代谢,从而开发改善健康的新治疗方法具有重要意义。代谢组学途径的研究,连同蛋白质工程,也可能有助于大规模提取天然产物,用作药物和药物前体。已经使用了几种方法将蛋白质注释与代谢途径相关联,以便直接从特定生物体中得出相关途径。这些方法可以从关联规则挖掘技术到机器学习方法(如决策树、朴素贝叶斯、逻辑回归和集成方法)。在本章中,我们将回顾机器学习在代谢途径分析中的应用,重点介绍使用深度学习来预测化合物(代谢物)与其各自代谢途径类别的关联。这种预测可以帮助解释小分子在生物体中的相互作用。受 Baranwal 等人(2019 年)的工作启发,我们展示了如何构建和训练深度学习神经网络模型来执行多标签预测。我们考虑了两种不同类型的指纹作为特征(输入到模型中)。模型的输出是输入分子参与的代谢途径类(来自 KEGG 数据集)的集合。我们将逐步介绍这个过程的各个步骤,包括数据收集、特征工程、模型选择、训练和评估。这个模型构建和评估过程可以很容易地转移到其他感兴趣的领域。本章中使用的所有源代码都在 https://github.com/jp-um/machine_learning_for_metabolomic_pathway_analyses 上公开提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验