CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China.
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Small. 2022 Nov;18(47):e2203956. doi: 10.1002/smll.202203956. Epub 2022 Oct 13.
Flexibility/wearable electronics such as strain/pressure sensors in human-machine interactions (HMI) are highly developed nowadays. However, challenges remain because of the lack of flexibility, fatigue resistance, and versatility, leading to mechanical damage to device materials during practical applications. In this work, a triple-network conductive hydrogel is fabricated by combining 2D Ti C T nanosheets with two kinds of 1D polymer chains, polyacrylamide, and polyvinyl alcohol. The Ti C T nanosheets act as the crosslinkers, which combine the two polymer chains of PAM and PVA via hydrogen bonds. Such a unique structure endows the hydrogel (MPP-hydrogel) with merits such as mechanical ultra-robust, super-elasticity, and excellent fatigue resistance. More importantly, the introduced Ti C T nanosheets not only enhance the hydrogel's conductivity but help form double electric layers (DELs) between the MXene nanosheets and the free water molecules inside the MPP-hydrogel. When the MPP-hydrogel is used as the electrode of the triboelectric nanogenerator (MPP-TENG), due to the dynamic balance of the DELs under the initial potential difference generated from the contact electrification as the driving force, an enhanced electrical output of the TENG is generated. Moreover, flexible strain/pressure sensors for tiny and low-frequency human motion detection are achieved. This work demonstrates a promising flexible electronic material for e-skin and HMI.
如今,在人机交互(HMI)中,灵活性/可穿戴电子产品,如应变/压力传感器,已经得到了高度发展。然而,由于缺乏灵活性、耐疲劳性和多功能性,导致在实际应用中设备材料会受到机械损伤,因此仍然存在挑战。在这项工作中,通过将二维 Ti C T 纳米片与两种一维聚合物链——聚丙烯酰胺和聚乙烯醇相结合,制备了一种三网络导电水凝胶。Ti C T 纳米片作为交联剂,通过氢键将 PAM 和 PVA 这两种聚合物链结合在一起。这种独特的结构使水凝胶(MPP-水凝胶)具有机械超坚固、超弹性和优异的耐疲劳性等优点。更重要的是,引入的 Ti C T 纳米片不仅提高了水凝胶的导电性,还有助于在 MPP-水凝胶内的 MXene 纳米片和游离水分子之间形成双电层(DEL)。当 MPP-水凝胶用作摩擦电纳米发电机(MPP-TENG)的电极时,由于接触带电产生的初始电势差驱动下 DEL 的动态平衡,会产生 TENG 的增强电输出。此外,还实现了用于微小低频人体运动检测的柔性应变/压力传感器。这项工作展示了一种用于电子皮肤和 HMI 的有前途的柔性电子材料。