使用混合冠状病毒优化算法对 2D 和体积医学图像进行多层次分割。

Multilevel segmentation of 2D and volumetric medical images using hybrid Coronavirus Optimization Algorithm.

机构信息

Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Egypt.

Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44519, Egypt.

出版信息

Comput Biol Med. 2022 Nov;150:106003. doi: 10.1016/j.compbiomed.2022.106003. Epub 2022 Aug 24.

Abstract

Medical image segmentation is a crucial step in Computer-Aided Diagnosis systems, where accurate segmentation is vital for perfect disease diagnoses. This paper proposes a multilevel thresholding technique for 2D and 3D medical image segmentation using Otsu and Kapur's entropy methods as fitness functions to determine the optimum threshold values. The proposed algorithm applies the hybridization concept between the recent Coronavirus Optimization Algorithm (COVIDOA) and Harris Hawks Optimization Algorithm (HHOA) to benefit from both algorithms' strengths and overcome their limitations. The improved performance of the proposed algorithm over COVIDOA and HHOA algorithms is demonstrated by solving 5 test problems from IEEE CEC 2019 benchmark problems. Medical image segmentation is tested using two groups of images, including 2D medical images and volumetric (3D) medical images, to demonstrate its superior performance. The utilized test images are from different modalities such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and X-ray images. The proposed algorithm is compared with seven well-known metaheuristic algorithms, where the performance is evaluated using four different metrics, including the best fitness values, Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Normalized Correlation Coefficient (NCC). The experimental results demonstrate the superior performance of the proposed algorithm in terms of convergence to the global optimum and making a good balance between exploration and exploitation properties. Moreover, the quality of the segmented images using the proposed algorithm at different threshold levels is better than the other methods according to PSNR, SSIM, and NCC values. Additionally, the Wilcoxon rank-sum test is conducted to prove the statistical significance of the proposed algorithm.

摘要

医学图像分割是计算机辅助诊断系统中的关键步骤,其中准确的分割对于完美的疾病诊断至关重要。本文提出了一种基于 Otsu 和 Kapur 熵方法的 2D 和 3D 医学图像分割的多级阈值技术,作为确定最佳阈值的适应度函数。所提出的算法应用了最近的冠状病毒优化算法 (COVIDOA) 和哈里斯鹰优化算法 (HHOA) 之间的杂交概念,以受益于两种算法的优势并克服它们的局限性。通过解决 IEEE CEC 2019 基准问题中的 5 个测试问题,证明了所提出的算法在 COVIDOA 和 HHOA 算法上的改进性能。使用两组图像,包括 2D 医学图像和容积 (3D) 医学图像,对医学图像分割进行测试,以展示其优越的性能。所使用的测试图像来自不同的模态,如磁共振成像 (MRI)、计算机断层扫描 (CT) 和 X 射线图像。将所提出的算法与七种知名的元启发式算法进行了比较,使用四个不同的指标来评估性能,包括最佳适应度值、峰值信噪比 (PSNR)、结构相似性指数 (SSIM) 和归一化相关系数 (NCC)。实验结果表明,所提出的算法在收敛到全局最优和在探索和利用之间取得良好平衡方面具有优越的性能。此外,根据 PSNR、SSIM 和 NCC 值,在所提出的算法的不同阈值水平下使用的分割图像的质量优于其他方法。此外,还进行了 Wilcoxon 秩和检验以证明所提出的算法的统计显著性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/892d/9398848/d17d790e25d5/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索