Lin Shanying, Jia Heming, Abualigah Laith, Altalhi Maryam
College of Marine Engineering, Dalian Maritime University, Dalian 116026, China.
School of Information Engineering, Sanming University, Sanming 365004, China.
Entropy (Basel). 2021 Dec 20;23(12):1700. doi: 10.3390/e23121700.
Image segmentation is a fundamental but essential step in image processing because it dramatically influences posterior image analysis. Multilevel thresholding image segmentation is one of the most popular image segmentation techniques, and many researchers have used meta-heuristic optimization algorithms (MAs) to determine the threshold values. However, MAs have some defects; for example, they are prone to stagnate in local optimal and slow convergence speed. This paper proposes an enhanced slime mould algorithm for global optimization and multilevel thresholding image segmentation, namely ESMA. First, the Levy flight method is used to improve the exploration ability of SMA. Second, quasi opposition-based learning is introduced to enhance the exploitation ability and balance the exploration and exploitation. Then, the superiority of the proposed work ESMA is confirmed concerning the 23 benchmark functions. Afterward, the ESMA is applied in multilevel thresholding image segmentation using minimum cross-entropy as the fitness function. We select eight greyscale images as the benchmark images for testing and compare them with the other classical and state-of-the-art algorithms. Meanwhile, the experimental metrics include the average fitness (mean), standard deviation (Std), peak signal to noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM), and Wilcoxon rank-sum test, which is utilized to evaluate the quality of segmentation. Experimental results demonstrated that ESMA is superior to other algorithms and can provide higher segmentation accuracy.
图像分割是图像处理中一个基本但至关重要的步骤,因为它对后续的图像分析有显著影响。多级阈值图像分割是最流行的图像分割技术之一,许多研究人员使用元启发式优化算法(MAs)来确定阈值。然而,MAs存在一些缺陷;例如,它们容易陷入局部最优且收敛速度慢。本文提出了一种用于全局优化和多级阈值图像分割的增强型黏菌算法,即ESMA。首先,使用莱维飞行方法来提高SMA的探索能力。其次,引入基于准对立学习来增强利用能力并平衡探索和利用。然后,针对23个基准函数证实了所提出的ESMA的优越性。之后,将ESMA应用于以最小交叉熵作为适应度函数的多级阈值图像分割。我们选择八幅灰度图像作为基准图像进行测试,并将它们与其他经典和最新算法进行比较。同时,实验指标包括平均适应度(均值)、标准差(Std)、峰值信噪比(PSNR)、结构相似性指数(SSIM)、特征相似性指数(FSIM)以及用于评估分割质量的威尔科克森秩和检验。实验结果表明,ESMA优于其他算法,能够提供更高的分割精度。