Alsahafi Yousef S, Elshora Doaa S, Mohamed Ehab R, Hosny Khalid M
Department of Information Technology, Khulis College, University of Jeddah, Jeddah 23890, Saudi Arabia.
Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt.
Diagnostics (Basel). 2023 Sep 15;13(18):2958. doi: 10.3390/diagnostics13182958.
Skin Cancer (SC) is among the most hazardous due to its high mortality rate. Therefore, early detection of this disease would be very helpful in the treatment process. Multilevel Thresholding (MLT) is widely used for extracting regions of interest from medical images. Therefore, this paper utilizes the recent Coronavirus Disease Optimization Algorithm (COVIDOA) to address the MLT issue of SC images utilizing the hybridization of Otsu, Kapur, and Tsallis as fitness functions. Various SC images are utilized to validate the performance of the proposed algorithm. The proposed algorithm is compared to the following five meta-heuristic algorithms: Arithmetic Optimization Algorithm (AOA), Sine Cosine Algorithm (SCA), Reptile Search Algorithm (RSA), Flower Pollination Algorithm (FPA), Seagull Optimization Algorithm (SOA), and Artificial Gorilla Troops Optimizer (GTO) to prove its superiority. The performance of all algorithms is evaluated using a variety of measures, such as Mean Square Error (MSE), Peak Signal-To-Noise Ratio (PSNR), Feature Similarity Index Metric (FSIM), and Normalized Correlation Coefficient (NCC). The results of the experiments prove that the proposed algorithm surpasses several competing algorithms in terms of MSE, PSNR, FSIM, and NCC segmentation metrics and successfully solves the segmentation issue.
皮肤癌(SC)因其高死亡率而成为最危险的疾病之一。因此,早期发现这种疾病对治疗过程非常有帮助。多级阈值处理(MLT)被广泛用于从医学图像中提取感兴趣区域。因此,本文利用最近的冠状病毒病优化算法(COVIDOA),以大津法、卡普尔法和Tsallis法的混合作为适应度函数,来解决皮肤癌图像的多级阈值处理问题。使用各种皮肤癌图像来验证所提算法的性能。将所提算法与以下五种元启发式算法进行比较:算术优化算法(AOA)、正弦余弦算法(SCA)、爬行动物搜索算法(RSA)、花授粉算法(FPA)、海鸥优化算法(SOA)和人工大猩猩部队优化器(GTO),以证明其优越性。使用多种指标评估所有算法的性能,如均方误差(MSE)、峰值信噪比(PSNR)、特征相似性指数度量(FSIM)和归一化相关系数(NCC)。实验结果证明,所提算法在MSE、PSNR、FSIM和NCC分割指标方面优于几种竞争算法,并成功解决了分割问题。
Diagnostics (Basel). 2023-9-15
Diagnostics (Basel). 2023-4-15
Math Biosci Eng. 2019-7-15
Entropy (Basel). 2019-3-23
Knowl Based Syst. 2022-7-19