文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于冠状病毒优化算法的彩色图像中皮肤病变的多阈值分割

Multilevel Threshold Segmentation of Skin Lesions in Color Images Using Coronavirus Optimization Algorithm.

作者信息

Alsahafi Yousef S, Elshora Doaa S, Mohamed Ehab R, Hosny Khalid M

机构信息

Department of Information Technology, Khulis College, University of Jeddah, Jeddah 23890, Saudi Arabia.

Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt.

出版信息

Diagnostics (Basel). 2023 Sep 15;13(18):2958. doi: 10.3390/diagnostics13182958.


DOI:10.3390/diagnostics13182958
PMID:37761325
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10529071/
Abstract

Skin Cancer (SC) is among the most hazardous due to its high mortality rate. Therefore, early detection of this disease would be very helpful in the treatment process. Multilevel Thresholding (MLT) is widely used for extracting regions of interest from medical images. Therefore, this paper utilizes the recent Coronavirus Disease Optimization Algorithm (COVIDOA) to address the MLT issue of SC images utilizing the hybridization of Otsu, Kapur, and Tsallis as fitness functions. Various SC images are utilized to validate the performance of the proposed algorithm. The proposed algorithm is compared to the following five meta-heuristic algorithms: Arithmetic Optimization Algorithm (AOA), Sine Cosine Algorithm (SCA), Reptile Search Algorithm (RSA), Flower Pollination Algorithm (FPA), Seagull Optimization Algorithm (SOA), and Artificial Gorilla Troops Optimizer (GTO) to prove its superiority. The performance of all algorithms is evaluated using a variety of measures, such as Mean Square Error (MSE), Peak Signal-To-Noise Ratio (PSNR), Feature Similarity Index Metric (FSIM), and Normalized Correlation Coefficient (NCC). The results of the experiments prove that the proposed algorithm surpasses several competing algorithms in terms of MSE, PSNR, FSIM, and NCC segmentation metrics and successfully solves the segmentation issue.

摘要

皮肤癌(SC)因其高死亡率而成为最危险的疾病之一。因此,早期发现这种疾病对治疗过程非常有帮助。多级阈值处理(MLT)被广泛用于从医学图像中提取感兴趣区域。因此,本文利用最近的冠状病毒病优化算法(COVIDOA),以大津法、卡普尔法和Tsallis法的混合作为适应度函数,来解决皮肤癌图像的多级阈值处理问题。使用各种皮肤癌图像来验证所提算法的性能。将所提算法与以下五种元启发式算法进行比较:算术优化算法(AOA)、正弦余弦算法(SCA)、爬行动物搜索算法(RSA)、花授粉算法(FPA)、海鸥优化算法(SOA)和人工大猩猩部队优化器(GTO),以证明其优越性。使用多种指标评估所有算法的性能,如均方误差(MSE)、峰值信噪比(PSNR)、特征相似性指数度量(FSIM)和归一化相关系数(NCC)。实验结果证明,所提算法在MSE、PSNR、FSIM和NCC分割指标方面优于几种竞争算法,并成功解决了分割问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adba/10529071/029c175bd45f/diagnostics-13-02958-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adba/10529071/b06dd2a77b9a/diagnostics-13-02958-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adba/10529071/7ccfc369364a/diagnostics-13-02958-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adba/10529071/029c175bd45f/diagnostics-13-02958-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adba/10529071/b06dd2a77b9a/diagnostics-13-02958-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adba/10529071/7ccfc369364a/diagnostics-13-02958-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adba/10529071/029c175bd45f/diagnostics-13-02958-g003a.jpg

相似文献

[1]
Multilevel Threshold Segmentation of Skin Lesions in Color Images Using Coronavirus Optimization Algorithm.

Diagnostics (Basel). 2023-9-15

[2]
Multilevel segmentation of 2D and volumetric medical images using hybrid Coronavirus Optimization Algorithm.

Comput Biol Med. 2022-11

[3]
An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm.

Comput Biol Med. 2022-10

[4]
A Hybrid Preaching Optimization Algorithm Based on Kapur Entropy for Multilevel Thresholding Color Image Segmentation.

Entropy (Basel). 2021-11-29

[5]
An Improved Search and Rescue Algorithm for Global Optimization and Blood Cell Image Segmentation.

Diagnostics (Basel). 2023-4-15

[6]
An efficient hybrid differential evolution-golden jackal optimization algorithm for multilevel thresholding image segmentation.

PeerJ Comput Sci. 2024-7-29

[7]
Modified dragonfly algorithm based multilevel thresholding method for color images segmentation.

Math Biosci Eng. 2019-7-15

[8]
An efficient multilevel image thresholding method based on improved heap-based optimizer.

Sci Rep. 2023-6-5

[9]
Kapur's Entropy for Color Image Segmentation Based on a Hybrid Whale Optimization Algorithm.

Entropy (Basel). 2019-3-23

[10]
A Chaotic Electromagnetic Field Optimization Algorithm Based on Fuzzy Entropy for Multilevel Thresholding Color Image Segmentation.

Entropy (Basel). 2019-4-15

本文引用的文献

[1]
Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review.

Evol Syst (Berl). 2022

[2]
Improved Reptile Search Algorithm by Salp Swarm Algorithm for Medical Image Segmentation.

J Bionic Eng. 2023-2-7

[3]
A modified reptile search algorithm for global optimization and image segmentation: Case study brain MRI images.

Comput Biol Med. 2023-1

[4]
Improved deep convolutional neural networks using chimp optimization algorithm for Covid19 diagnosis from the X-ray images.

Expert Syst Appl. 2023-3-1

[5]
Multilevel segmentation of 2D and volumetric medical images using hybrid Coronavirus Optimization Algorithm.

Comput Biol Med. 2022-11

[6]
Multilevel thresholding satellite image segmentation using chaotic coronavirus optimization algorithm with hybrid fitness function.

Neural Comput Appl. 2023

[7]
COVIDOA: a novel evolutionary optimization algorithm based on coronavirus disease replication lifecycle.

Neural Comput Appl. 2022

[8]
Directional mutation and crossover boosted ant colony optimization with application to COVID-19 X-ray image segmentation.

Comput Biol Med. 2022-9

[9]
BCOVIDOA: A Novel Binary Coronavirus Disease Optimization Algorithm for Feature Selection.

Knowl Based Syst. 2022-7-19

[10]
Adaptive soft erasure with edge self-attention for weakly supervised semantic segmentation: Thyroid ultrasound image case study.

Comput Biol Med. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索