Suppr超能文献

一种用于多级阈值图像分割的高效混合差分进化-金豺优化算法。

An efficient hybrid differential evolution-golden jackal optimization algorithm for multilevel thresholding image segmentation.

作者信息

Meng Xianmeng, Tan Linglong, Wang Yueqin

机构信息

School of Electronics Engineering, Anhui Xinhua University, Hefei, China.

School of Computer Science and Information Engineering, Hefei University of Technology, Hefei, China.

出版信息

PeerJ Comput Sci. 2024 Jul 29;10:e2121. doi: 10.7717/peerj-cs.2121. eCollection 2024.

Abstract

Image segmentation is a crucial process in the field of image processing. Multilevel threshold segmentation is an effective image segmentation method, where an image is segmented into different regions based on multilevel thresholds for information analysis. However, the complexity of multilevel thresholding increases dramatically as the number of thresholds increases. To address this challenge, this article proposes a novel hybrid algorithm, termed differential evolution-golden jackal optimizer (DEGJO), for multilevel thresholding image segmentation using the minimum cross-entropy (MCE) as a fitness function. The DE algorithm is combined with the GJO algorithm for iterative updating of position, which enhances the search capacity of the GJO algorithm. The performance of the DEGJO algorithm is assessed on the CEC2021 benchmark function and compared with state-of-the-art optimization algorithms. Additionally, the efficacy of the proposed algorithm is evaluated by performing multilevel segmentation experiments on benchmark images. The experimental results demonstrate that the DEGJO algorithm achieves superior performance in terms of fitness values compared to other metaheuristic algorithms. Moreover, it also yields good results in quantitative performance metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and feature similarity index (FSIM) measurements.

摘要

图像分割是图像处理领域中的一个关键过程。多级阈值分割是一种有效的图像分割方法,它基于多级阈值将图像分割成不同区域以进行信息分析。然而,随着阈值数量的增加,多级阈值处理的复杂度会急剧增加。为应对这一挑战,本文提出了一种新颖的混合算法,称为差分进化-金豺优化器(DEGJO),用于以最小交叉熵(MCE)作为适应度函数的多级阈值图像分割。差分进化算法与金豺优化算法相结合用于位置的迭代更新,这增强了金豺优化算法的搜索能力。在CEC2021基准函数上评估了DEGJO算法的性能,并与当前最先进的优化算法进行了比较。此外,通过对基准图像进行多级分割实验来评估所提出算法的有效性。实验结果表明,与其他元启发式算法相比,DEGJO算法在适应度值方面具有卓越的性能。此外,它在诸如峰值信噪比(PSNR)、结构相似性指数(SSIM)和特征相似性指数(FSIM)测量等定量性能指标方面也产生了良好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72c3/11322989/533b7ab9cc52/peerj-cs-10-2121-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验