Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX, 78712, USA.
Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA.
Biomech Model Mechanobiol. 2023 Feb;22(1):57-70. doi: 10.1007/s10237-022-01631-z. Epub 2022 Oct 13.
Identifying the constitutive parameters of soft materials often requires heterogeneous mechanical test modes, such as simple shear. In turn, interpreting the resulting complex deformations necessitates the use of inverse strategies that iteratively call forward finite element solutions. In the past, we have found that the cost of repeatedly solving non-trivial boundary value problems can be prohibitively expensive. In this current work, we leverage our prior experimentally derived mechanical test data to explore an alternative approach. Specifically, we investigate whether a machine learning-based approach can accelerate the process of identifying material parameters based on our mechanical test data. Toward this end, we pursue two different strategies. In the first strategy, we replace the forward finite element simulations within an iterative optimization framework with a machine learning-based metamodel. Here, we explore both Gaussian process regression and neural network metamodels. In the second strategy, we forgo the iterative optimization framework and use a stand alone neural network to predict the entire material parameter set directly from experimental results. We first evaluate both approaches with simple shear experiments on blood clot, an isotropic, homogeneous material. Next, we evaluate both approaches against simple shear and uniaxial loading experiments on right ventricular myocardium, an anisotropic, heterogeneous material. We find that replacing the forward finite element simulations with metamodels significantly accelerates the parameter identification process with excellent results in the case of blood clot, and with satisfying results in the case of right ventricular myocardium. On the other hand, we find that replacing the entire optimization framework with a neural network yielded unsatisfying results, especially for right ventricular myocardium. Overall, the importance of our work stems from providing a baseline example showing how machine learning can accelerate the process of material parameter identification for soft materials from complex mechanical data, and from providing an open access experimental and simulation dataset that may serve as a benchmark dataset for others interested in applying machine learning techniques to soft tissue biomechanics.
识别软物质的本构参数通常需要异构的力学测试模式,如简单剪切。反过来,解释由此产生的复杂变形需要使用迭代调用正向有限元解的逆策略。在过去,我们发现反复求解非平凡边界值问题的成本可能非常高。在当前的工作中,我们利用之前从机械测试数据中获得的经验,探索了一种替代方法。具体来说,我们研究了基于机器学习的方法是否可以加速基于我们的机械测试数据识别材料参数的过程。为此,我们采用了两种不同的策略。在第一种策略中,我们用基于机器学习的代理模型替换迭代优化框架中的正向有限元模拟。在这里,我们探索了高斯过程回归和神经网络代理模型。在第二种策略中,我们放弃迭代优化框架,使用独立的神经网络直接从实验结果预测整个材料参数集。我们首先在血纤维蛋白凝块(各向同性、均匀的材料)上进行简单剪切实验,评估这两种方法。接下来,我们在右心室心肌(各向异性、非均匀的材料)上进行简单剪切和单轴加载实验,评估这两种方法。我们发现,用代理模型替换正向有限元模拟可以显著加速参数识别过程,在血纤维蛋白凝块的情况下效果很好,在右心室心肌的情况下效果也令人满意。另一方面,我们发现用神经网络替换整个优化框架的方法效果不佳,特别是在右心室心肌的情况下。总的来说,我们的工作的重要性在于提供了一个基准示例,展示了机器学习如何加速从复杂力学数据中识别软物质材料参数的过程,并提供了一个开放获取的实验和模拟数据集,这可能成为其他对将机器学习技术应用于软组织生物力学感兴趣的人的基准数据集。