Suppr超能文献

组织扩张中人体皮肤生长数字孪生模型的开发与校准

Development and calibration of digital twins for human skin growth in tissue expansion.

作者信息

Laudo Joel, Han Tianhong, Figueroa Ariel E, Ledwon Joanna, Gosain Arun K, Lee Taeksang, Tepole Adrian Buganza

机构信息

School of Mechanical Engineering Purdue University, West Lafayette, IN, USA.

Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA.

出版信息

Acta Biomater. 2025 May 15;198:267-280. doi: 10.1016/j.actbio.2025.03.026. Epub 2025 Mar 25.

Abstract

Tissue expansion (TE), an essential technique in reconstructive surgery, leverages the growth of skin in response to stretch. However, human skin growth dynamics have not been evaluated in vivo. Previously, we quantified this process in a porcine model and developed a calibrated computational framework. Here, we create patient-specific finite element (FE) models of skin growth in TE using longitudinal 3D photos collected during TE treatment. These geometries enable Bayesian model calibration, accounting for uncertainties in boundary conditions, mechanical properties, and biological parameters. The framework incorporates prior knowledge from the porcine model as well as literature information on human skin mechanics. The likelihood function assesses alignment between predicted and observed geometries, and predicted and observed skin growth. To efficiently sample the posterior distribution, we use Markov Chain Monte Carlo (MCMC) with Gaussian process surrogates, reducing computational cost. This pipeline is demonstrated in five TE cases. Post-calibration, FE models closely match 3D photos, with errors below 2 mm on average. Notably, Bayesian calibration collapses the critical stretch parameter posterior distribution. This study presents the first in vivo measurement of human skin growth, confirming that FE models accurately capture TE in the clinical setting, and that porcine-derived parameters provide a strong prior for Bayesian calibration in the clinical case. These findings support the development of personalized digital twins for TE, enhancing surgical planning and outcomes. Statement of significance Tissue expansion (TE) is widely used in reconstructive surgery, particularly for breast reconstruction and pediatric defect repair. While skin growth has been quantified in animal models, this work provides the first clinical measurement of human skin growth during TE. We employ a Bayesian calibration framework to create personalized finite element (FE) simulations for five TE cases. The initial FE model is constructed from a patient's 3D photo taken at the start of treatment. Then, uncertainties in mechanical and biological parameters as well as boundary conditions are sampled and the model run. We use Gaussian process surrogates to replace the FE model. Calibration of parameters is done with 3D photos taken longitudinally during TE. This pipeline for skin digital twins can enhance personalized TE procedures, optimizing outcomes and reducing complications.

摘要

组织扩张术(TE)是重建手术中的一项关键技术,它利用皮肤对拉伸的生长反应。然而,尚未在体内评估人类皮肤的生长动态。此前,我们在猪模型中对这一过程进行了量化,并开发了一个经过校准的计算框架。在此,我们利用在TE治疗期间收集的纵向3D照片,创建了TE中皮肤生长的患者特异性有限元(FE)模型。这些几何形状能够进行贝叶斯模型校准,考虑到边界条件、力学性能和生物学参数中的不确定性。该框架纳入了来自猪模型的先验知识以及关于人类皮肤力学的文献信息。似然函数评估预测几何形状与观察到的几何形状之间以及预测的皮肤生长与观察到的皮肤生长之间的一致性。为了有效地对后验分布进行采样,我们使用带有高斯过程代理的马尔可夫链蒙特卡罗(MCMC)方法,降低了计算成本。该流程在五个TE病例中得到了验证。校准后,FE模型与3D照片紧密匹配,平均误差低于2毫米。值得注意的是,贝叶斯校准使关键拉伸参数的后验分布收敛。本研究首次对人类皮肤生长进行了体内测量,证实FE模型在临床环境中准确地捕捉了TE,并且猪源参数为临床病例中的贝叶斯校准提供了有力的先验。这些发现支持了TE个性化数字孪生模型的开发,增强了手术规划和手术效果。重要性声明组织扩张术(TE)广泛应用于重建手术,特别是用于乳房重建和小儿缺损修复。虽然已经在动物模型中对皮肤生长进行了量化,但这项工作首次对TE期间的人类皮肤生长进行了临床测量。我们采用贝叶斯校准框架为五个TE病例创建个性化的有限元(FE)模拟。初始FE模型由治疗开始时患者的3D照片构建。然后,对力学和生物学参数以及边界条件中的不确定性进行采样并运行模型。我们使用高斯过程代理来替代FE模型。参数校准是通过TE期间纵向拍摄的3D照片完成的。这种用于皮肤数字孪生模型的流程可以增强个性化的TE手术,优化手术效果并减少并发症。

相似文献

9
An axisymmetric computational model of skin expansion and growth.皮肤扩张与生长的轴对称计算模型。
Biomech Model Mechanobiol. 2007 Apr;6(3):177-88. doi: 10.1007/s10237-006-0047-9. Epub 2006 Jun 10.

本文引用的文献

9
The Digital Twin in Medicine: A Key to the Future of Healthcare?医学中的数字孪生:医疗保健未来的关键?
Front Med (Lausanne). 2022 Jul 14;9:907066. doi: 10.3389/fmed.2022.907066. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验