Suppr超能文献

基于对地观测数据的多光谱指数融合,推导出湿地覆盖类型(WCTs)。

Deriving wetland-cover types (WCTs) from integration of multispectral indices based on Earth observation data.

机构信息

Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur, India.

Institute of Geosciences, University of Potsdam, Potsdam, Germany.

出版信息

Environ Monit Assess. 2022 Oct 13;194(12):878. doi: 10.1007/s10661-022-10541-7.

Abstract

The wetland cover is defined as the spatially homogenous region of a wetland attributed to the underlying biophysical conditions such as vegetation, turbidity, hydric soil, and the amount of water. Here, we present a novel method to derive the wetland-cover types (WCTs) combining three commonly used multispectral indices, NDVI, MNDWI, and NDTI, in three large Ramsar wetlands located in different geomorphic and climatic settings across India. These wetlands include the Kaabar Tal, a floodplain wetland in east Ganga Plains, Chilika Lagoon, a coastal wetland in eastern India, and Nal Sarovar in semi-arid western India. The novelty of our approach is that the derived WCTs are stable in space and time, and therefore, a given WCT across different wetlands or within different zones of a large wetland will imply similar underlying biophysical attributes. The WCTs can therefore provide a novel tool for monitoring and change detection of wetland cover types. We have automated the proposed WCT algorithm using the Google Earth Engine (GEE) environment and by developing ArcGIS tools. The method can be implemented on any wetland and using any multispectral imagery dataset with visible and NIR bands. The proposed methodology is simple yet robust and easy to implement and, therefore, holds significant importance in wetland monitoring and management.

摘要

湿地覆盖是指具有相似底层生物物理条件(如植被、浑浊度、湿土和水量)的湿地空间均匀区域。在这里,我们提出了一种新的方法,该方法结合了三种常用的多光谱指数(NDVI、MNDWI 和 NDTI),从印度不同地貌和气候条件下的三个大型拉姆萨尔湿地中提取湿地覆盖类型(WCT)。这些湿地包括位于东恒河平原的卡巴尔塔尔(Kaabar Tal)洪泛湿地、位于印度东部的基利卡 lagoon(Chilika Lagoon)沿海湿地以及位于半干旱的印度西部的纳尔萨瓦尔(Nal Sarovar)湿地。我们方法的新颖之处在于,提取的 WCT 在空间和时间上都是稳定的,因此,不同湿地或大型湿地不同区域的给定 WCT 将意味着相似的底层生物物理属性。因此,WCT 可以为湿地覆盖类型的监测和变化检测提供一种新工具。我们已经使用 Google Earth Engine(GEE)环境和开发的 ArcGIS 工具自动化了所提出的 WCT 算法。该方法可以在任何湿地和任何具有可见和近红外波段的多光谱图像数据集上实施。所提出的方法简单但稳健、易于实施,因此在湿地监测和管理方面具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验