Multidisciplinary Centre for Advanced Research & Studies (MCARS), Jamia Millia Islamia, New Delhi 110025, India.
Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Gurugram 122052, India.
Cells. 2022 Sep 23;11(19):2969. doi: 10.3390/cells11192969.
Circulating cell-free mitochondrial DNA (cf-mtDNA) has been found in the plasma of severely ill COVID-19 patients and is now known as a strong predictor of mortality. However, the underlying mechanism of mtDNA release is unexplored. Here, we show a novel mechanism of SARS-CoV-2-mediated pro-inflammatory/pro-apoptotic mtDNA release and a rational therapeutic stem cell-based approach to mitigate these effects. We systematically screened the effects of 29 SARS-CoV-2 proteins on mitochondrial damage and cell death and found that NSP4 and ORF9b caused extensive mitochondrial structural changes, outer membrane macropore formation, and the release of inner membrane vesicles loaded with mtDNA. The macropore-forming ability of NSP4 was mediated through its interaction with BCL2 antagonist/killer (BAK), whereas ORF9b was found to inhibit the anti-apoptotic member of the BCL2 family protein myeloid cell leukemia-1 (MCL1) and induce inner membrane vesicle formation containing mtDNA. Knockdown of BAK and/or overexpression of MCL1 significantly reversed SARS-CoV-2-mediated mitochondrial damage. Therapeutically, we engineered human mesenchymal stem cells (MSCs) with a simultaneous knockdown of BAK and overexpression of MCL1 (MSCshBAK+MCL1) and named these cells IMAT-MSCs (intercellular mitochondrial transfer-assisted therapeutic MSCs). Upon co-culture with SARS-CoV-2-infected or NSP4/ORF9b-transduced airway epithelial cells, IMAT-MSCs displayed functional intercellular mitochondrial transfer (IMT) via tunneling nanotubes (TNTs). The mitochondrial donation by IMAT-MSCs attenuated the pro-inflammatory and pro-apoptotic mtDNA release from co-cultured epithelial cells. Our findings thus provide a new mechanistic basis for SARS-CoV-2-induced cell death and a novel therapeutic approach to engineering MSCs for the treatment of COVID-19.
循环细胞游离线粒体 DNA(cf-mtDNA)已在重症 COVID-19 患者的血浆中被发现,现在被认为是死亡率的强有力预测因子。然而,mtDNA 释放的潜在机制仍未被探索。在这里,我们展示了一种新型的 SARS-CoV-2 介导的促炎/促凋亡 mtDNA 释放机制,以及一种基于合理治疗的干细胞方法来减轻这些影响。我们系统地筛选了 29 种 SARS-CoV-2 蛋白对线粒体损伤和细胞死亡的影响,发现 NSP4 和 ORF9b 导致广泛的线粒体结构改变、外膜大孔形成以及负载 mtDNA 的内膜小泡释放。NSP4 的大孔形成能力是通过其与 BCL2 拮抗剂/杀伤剂(BAK)的相互作用介导的,而 ORF9b 被发现抑制 BCL2 家族蛋白髓系细胞白血病-1(MCL1)的抗凋亡成员,并诱导含有 mtDNA 的内膜小泡形成。BAK 的敲低和/或 MCL1 的过表达显著逆转了 SARS-CoV-2 介导的线粒体损伤。在治疗方面,我们通过同时敲低 BAK 和过表达 MCL1 来对人间充质干细胞(MSCs)进行工程改造(MSCshBAK+MCL1),并将这些细胞命名为 IMAT-MSCs(细胞间线粒体转移辅助治疗性 MSCs)。在与 SARS-CoV-2 感染或 NSP4/ORF9b 转导的气道上皮细胞共培养时,IMAT-MSCs 通过隧道纳米管(TNTs)显示出功能性的细胞间线粒体转移(IMT)。IMAT-MSCs 的线粒体供体减少了共培养上皮细胞中促炎和促凋亡的 mtDNA 释放。我们的研究结果为 SARS-CoV-2 诱导的细胞死亡提供了新的机制基础,并为基于工程改造 MSC 治疗 COVID-19 提供了一种新的治疗方法。