Suppr超能文献

肥胖会损害依赖心磷脂的线粒体自噬和间充质干细胞的治疗性细胞间线粒体转移能力。

Obesity impairs cardiolipin-dependent mitophagy and therapeutic intercellular mitochondrial transfer ability of mesenchymal stem cells.

机构信息

CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110007, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

出版信息

Cell Death Dis. 2023 May 13;14(5):324. doi: 10.1038/s41419-023-05810-3.

Abstract

Mesenchymal stem cell (MSC) transplantation alleviates metabolic defects in diseased recipient cells by intercellular mitochondrial transport (IMT). However, the effect of host metabolic conditions on IMT and thereby on the therapeutic efficacy of MSCs has largely remained unexplored. Here we found impaired mitophagy, and reduced IMT in MSCs derived from high-fat diet (HFD)-induced obese mouse (MSC-Ob). MSC-Ob failed to sequester their damaged mitochondria into LC3-dependent autophagosomes due to decrease in mitochondrial cardiolipin content, which we propose as a putative mitophagy receptor for LC3 in MSCs. Functionally, MSC-Ob exhibited diminished potential to rescue mitochondrial dysfunction and cell death in stress-induced airway epithelial cells. Pharmacological modulation of MSCs enhanced cardiolipin-dependent mitophagy and restored their IMT ability to airway epithelial cells. Therapeutically, these modulated MSCs attenuated features of allergic airway inflammation (AAI) in two independent mouse models by restoring healthy IMT. However, unmodulated MSC-Ob failed to do so. Notably, in human (h)MSCs, induced metabolic stress associated impaired cardiolipin-dependent mitophagy was restored upon pharmacological modulation. In summary, we have provided the first comprehensive molecular understanding of impaired mitophagy in obese-derived MSCs and highlight the importance of pharmacological modulation of these cells for therapeutic intervention. A MSCs obtained from (HFD)-induced obese mice (MSC-Ob) show underlying mitochondrial dysfunction with a concomitant decrease in cardiolipin content. These changes prevent LC3-cardiolipin interaction, thereby reducing dysfunctional mitochondria sequestration into LC3-autophagosomes and thus impaired mitophagy. The impaired mitophagy is associated with reduced intercellular mitochondrial transport (IMT) via tunneling nanotubes (TNTs) between MSC-Ob and epithelial cells in co-culture or in vivo. B Pyrroloquinoline quinone (PQQ) modulation in MSC-Ob restores mitochondrial health, cardiolipin content, and thereby sequestration of depolarized mitochondria into the autophagosomes to alleviate impaired mitophagy. Concomitantly, MSC-Ob shows restoration of mitochondrial health upon PQQ treatment (MSC-ObPQQ). During co-culture with epithelial cells or transplantation in vivo into the mice lungs, MSC-ObPQQ restores IMT and prevents epithelial cell death. C Upon transplantation in two independent allergic airway inflammatory mouse models, MSC-Ob failed to rescue the airway inflammation, hyperactivity, metabolic changes in epithelial cells. D PQQ modulated MSCs restored these metabolic defects and restored lung physiology and airway remodeling parameters.

摘要

间充质干细胞(MSC)通过细胞间线粒体转运(IMT)减轻患病受体细胞的代谢缺陷。然而,宿主代谢条件对 IMT 以及对 MSC 治疗效果的影响在很大程度上仍未得到探索。在这里,我们发现高脂肪饮食(HFD)诱导肥胖小鼠(MSC-Ob)来源的 MSC 中存在线粒体自噬受损和 IMT 减少。由于线粒体心磷脂含量减少,MSC-Ob 无法将受损的线粒体隔离到 LC3 依赖性自噬体中,我们提出 LC3 在心磷脂中的作用可能是 MSC 中的一种潜在的线粒体自噬受体。功能上,MSC-Ob 减轻应激诱导的气道上皮细胞中线粒体功能障碍和细胞死亡的能力降低。MSC 的药理学调节增强了心磷脂依赖性线粒体自噬,并恢复了它们向气道上皮细胞的 IMT 能力。在治疗上,这些调节后的 MSC 通过恢复健康的 IMT 减轻了两种独立的小鼠模型中的变应性气道炎症(AAI)特征。然而,未调节的 MSC-Ob 则不能。值得注意的是,在人(h)MSC 中,诱导的代谢应激相关的心磷脂依赖性线粒体自噬受损在药理学调节后得到恢复。总之,我们首次全面了解了肥胖来源的 MSC 中线粒体自噬受损的情况,并强调了对这些细胞进行药理学调节以进行治疗干预的重要性。A 从(HFD)诱导肥胖的小鼠中获得的间充质干细胞(MSC-Ob)显示出潜在的线粒体功能障碍,同时心磷脂含量降低。这些变化阻止了 LC3-心磷脂的相互作用,从而减少了将功能失调的线粒体隔离到 LC3-自噬体中,从而减少了线粒体自噬。受损的线粒体自噬与 MSC-Ob 与上皮细胞共培养或体内共培养时通过隧道纳米管(TNT)进行的细胞间线粒体转运(IMT)减少有关。B 在 MSC-Ob 中吡咯喹啉醌(PQQ)的调节恢复了线粒体健康、心磷脂含量,从而将去极化的线粒体隔离到自噬体中,减轻了受损的线粒体自噬。同时,MSC-Ob 在 PQQ 处理后显示出线粒体健康的恢复(MSC-ObPQQ)。在与上皮细胞共培养或体内移植到小鼠肺部时,MSC-ObPQQ 恢复了 IMT 并防止上皮细胞死亡。C 在两种独立的变应性气道炎症小鼠模型中移植后,MSC-Ob 未能挽救气道炎症、上皮细胞的过度活跃、代谢变化。D PQQ 调节的 MSC 恢复了这些代谢缺陷,并恢复了肺生理学和气道重塑参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e85c/10182060/1e1a63b4fd26/41419_2023_5810_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验