Suppr超能文献

SkinSensPred 作为一种有前途的皮肤致敏性整合测试策略的计算工具。

SkinSensPred as a Promising in Silico Tool for Integrated Testing Strategy on Skin Sensitization.

机构信息

Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.

Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan.

出版信息

Int J Environ Res Public Health. 2022 Oct 7;19(19):12856. doi: 10.3390/ijerph191912856.

Abstract

Skin sensitization is an important regulatory endpoint associated with allergic contact dermatitis. Recently, several adverse outcome pathway (AOP)-based alternative methods were developed to replace animal testing for evaluating skin sensitizers. The AOP-based assays were further integrated as a two-out-of-three method with good predictivity. However, the acquisition of experimental data is resource-intensive. In contrast, an integrated testing strategy (ITS) capable of maximizing the usage of laboratory data from AOP-based and in silico methods was developed as defined approaches (DAs) to both hazard and potency assessment. There are currently two in silico models, namely Derek Nexus and OECD QSAR Toolbox, evaluated in the OECD Testing Guideline No. 497. Since more advanced machine learning algorithms have been proposed for skin sensitization prediction, it is therefore desirable to evaluate their performance under the ITS framework. This study evaluated the performance of a new ITS DA (ITS-SkinSensPred) adopting a transfer learning-based SkinSensPred model. Results showed that the ITS-SkinSensPred has similar or slightly better performance compared to the other ITS models. SkinSensPred-based ITS is expected to be a promising method for assessing skin sensitization.

摘要

皮肤致敏是与过敏性接触性皮炎相关的一个重要监管终点。最近,已经开发了几种基于不良结局途径(AOP)的替代方法来替代动物测试,以评估皮肤致敏剂。基于 AOP 的测定法进一步整合为具有良好预测性的两中选三方法。然而,实验数据的获取是资源密集型的。相比之下,一种能够最大限度地利用基于 AOP 和计算方法的实验室数据的集成测试策略(ITS)已被开发为危害和效力评估的定义方法(DA)。目前,有两种基于 OECD 测试指南 No.497 的计算模型,即 Derek Nexus 和 OECD QSAR Toolbox,已经进行了评估。由于已经提出了更先进的皮肤致敏预测机器学习算法,因此期望在 ITS 框架下评估它们的性能。本研究评估了采用基于迁移学习的 SkinSensPred 模型的新 ITS DA(ITS-SkinSensPred)的性能。结果表明,与其他 ITS 模型相比,ITS-SkinSensPred 具有相似或略好的性能。基于 SkinSensPred 的 ITS 有望成为评估皮肤致敏的一种很有前途的方法。

相似文献

6
Integrated decision strategies for skin sensitization hazard.皮肤致敏危害的综合决策策略
J Appl Toxicol. 2016 Sep;36(9):1150-62. doi: 10.1002/jat.3281. Epub 2016 Feb 6.

本文引用的文献

2
Prediction of Skin Sensitization: ?皮肤致敏预测:?
Front Pharmacol. 2021 May 4;12:655771. doi: 10.3389/fphar.2021.655771. eCollection 2021.
5
Transfer learning for predicting human skin sensitizers.基于迁移学习的人类皮肤致敏物预测。
Arch Toxicol. 2019 Apr;93(4):931-940. doi: 10.1007/s00204-019-02420-x. Epub 2019 Feb 26.
6
Computational approaches for skin sensitization prediction.计算方法在皮肤致敏预测中的应用。
Crit Rev Toxicol. 2018 Oct;48(9):738-760. doi: 10.1080/10408444.2018.1528207. Epub 2018 Nov 29.
8
Evaluation and improvement of QSAR predictions of skin sensitization for pesticides.农药皮肤致敏性定量构效关系预测的评价与改进。
SAR QSAR Environ Res. 2018 Oct;29(10):823-846. doi: 10.1080/1062936X.2018.1518261. Epub 2018 Sep 25.
9
International regulatory requirements for skin sensitization testing.国际皮肤致敏试验监管要求。
Regul Toxicol Pharmacol. 2018 Jun;95:52-65. doi: 10.1016/j.yrtph.2018.03.003. Epub 2018 Mar 6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验