Heinrich Maria, Woike Jan K, Spies Claudia D, Wegwarth Odette
Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
Berlin Institute of Health@Charité (BIH), Anna-Louisa-Karsch 2, 10178 Berlin, Germany.
J Clin Med. 2022 Sep 24;11(19):5629. doi: 10.3390/jcm11195629.
Postoperative delirium (POD) is associated with increased complication and mortality rates, particularly among older adult patients. However, guideline recommendations for POD detection and management are poorly implemented. Fast-and-frugal trees (FFTrees), which are simple prediction algorithms, may be useful in this context. We compared the capacity of simple FFTrees with two more complex models-namely, unconstrained classification trees (UDTs) and logistic regression (LogReg)-for the prediction of POD among older surgical patients in the perioperative setting. Models were trained and tested on the European BioCog project clinical dataset. Based on the entire dataset, two different FFTrees were developed for the pre-operative and postoperative settings. Within the pre-operative setting, FFTrees outperformed the more complex UDT algorithm with respect to predictive balanced accuracy, nearing the prediction level of the logistic regression. Within the postoperative setting, FFTrees outperformed both complex models. Applying the best-performing algorithms to the full datasets, we proposed an FFTree using four cues (Charlson Comorbidity Index (CCI), site of surgery, physical status and frailty status) for the pre-operative setting and an FFTree containing only three cues (duration of anesthesia, age and CCI) for the postoperative setting. Given that both FFTrees contained considerably fewer criteria, which can be easily memorized and applied by health professionals in daily routine, FFTrees could help identify patients requiring intensified POD screening.
术后谵妄(POD)与并发症和死亡率增加相关,尤其是在老年患者中。然而,关于POD检测和管理的指南建议实施情况不佳。快速节俭树(FFTrees)是简单的预测算法,在这种情况下可能有用。我们比较了简单的FFTrees与另外两种更复杂的模型——即无约束分类树(UDTs)和逻辑回归(LogReg)——在围手术期预测老年手术患者POD的能力。模型在欧洲生物认知项目临床数据集上进行训练和测试。基于整个数据集,针对术前和术后设置开发了两种不同的FFTrees。在术前设置中,FFTrees在预测平衡准确性方面优于更复杂的UDT算法,接近逻辑回归的预测水平。在术后设置中,FFTrees优于这两种复杂模型。将性能最佳的算法应用于完整数据集,我们提出了一种术前设置使用四个线索(Charlson合并症指数(CCI)、手术部位、身体状况和虚弱状况)的FFTree,以及一种术后设置仅包含三个线索(麻醉持续时间、年龄和CCI)的FFTree。鉴于这两种FFTrees包含的标准要少得多,卫生专业人员在日常工作中可以轻松记住并应用,FFTrees有助于识别需要加强POD筛查的患者。