School of Computing Science and Engineering, Galgotias University, Greater Noida 203201, India.
Department of Computer Science, Kebri Dehar University, Kebri Dehar P.O. Box 250, Ethiopia.
Sensors (Basel). 2022 Sep 21;22(19):7169. doi: 10.3390/s22197169.
There can be many inherent issues in the process of managing cloud infrastructure and the platform of the cloud. The platform of the cloud manages cloud software and legality issues in making contracts. The platform also handles the process of managing cloud software services and legal contract-based segmentation. In this paper, we tackle these issues directly with some feasible solutions. For these constraints, the Averaged One-Dependence Estimators (AODE) classifier and the SELECT Applicable Only to Parallel Server (SELECT-APSL ASA) method are proposed to separate the data related to the place. ASA is made up of the AODE and SELECT Applicable Only to Parallel Server. The AODE classifier is used to separate the data from smart city data based on the hybrid data obfuscation technique. The data from the hybrid data obfuscation technique manages 50% of the raw data, and 50% of hospital data is masked using the proposed transmission. The analysis of energy consumption before the cryptosystem shows the total packet delivered by about 71.66% compared with existing algorithms. The analysis of energy consumption after cryptosystem assumption shows 47.34% consumption, compared to existing state-of-the-art algorithms. The average energy consumption before data obfuscation decreased by 2.47%, and the average energy consumption after data obfuscation was reduced by 9.90%. The analysis of the makespan time before data obfuscation decreased by 33.71%. Compared to existing state-of-the-art algorithms, the study of makespan time after data obfuscation decreased by 1.3%. These impressive results show the strength of our methodology.
在管理云基础架构和云平台的过程中可能存在许多内在问题。云平台管理云软件和合同制定中的合法性问题。该平台还处理管理云软件服务和基于法律合同的分段的过程。在本文中,我们直接解决了这些问题,并提出了一些可行的解决方案。对于这些约束,提出了平均一依赖估计器(AODE)分类器和仅适用于并行服务器的选择(SELECT-APSL ASA)方法来分离与位置相关的数据。ASA 由 AODE 和仅适用于并行服务器的选择组成。AODE 分类器用于根据混合数据混淆技术分离智慧城市数据。混合数据混淆技术管理 50%的原始数据,使用提出的传输对 50%的医院数据进行屏蔽。在加密系统之前对能耗进行分析表明,与现有算法相比,大约交付了 71.66%的总数据包。在加密系统假设之后对能耗进行分析表明,与现有最先进的算法相比,能耗为 47.34%。数据混淆前的平均能耗降低了 2.47%,数据混淆后的平均能耗降低了 9.90%。数据混淆前的最长完成时间分析减少了 33.71%。与现有最先进的算法相比,数据混淆后的最长完成时间研究减少了 1.3%。这些令人印象深刻的结果表明了我们方法的优势。