Suppr超能文献

软匹配:使用分形曲线的组合时空序列比较扫描路径。

SoftMatch: Comparing Scanpaths Using Combinatorial Spatio-Temporal Sequences with Fractal Curves.

机构信息

Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia.

Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia.

出版信息

Sensors (Basel). 2022 Sep 30;22(19):7438. doi: 10.3390/s22197438.

Abstract

Recent studies matching eye gaze patterns with those of others contain research that is heavily reliant on string editing methods borrowed from early work in bioinformatics. Previous studies have shown string editing methods to be susceptible to false negative results when matching mutated genes or unordered regions of interest in scanpaths. Even as new methods have emerged for matching amino acids using novel combinatorial techniques, scanpath matching is still limited by a traditional collinear approach. This approach reduces the ability to discriminate between free viewing scanpaths of two people looking at the same stimulus due to the heavy weight placed on linearity. To overcome this limitation, we here introduce a new method called SoftMatch to compare pairs of scanpaths. SoftMatch diverges from traditional scanpath matching in two different ways: firstly, by preserving locality using fractal curves to reduce dimensionality from 2D Cartesian (x,y) coordinates into 1D (h) Hilbert distances, and secondly by taking a combinatorial approach to fixation matching using discrete Fréchet distance measurements between segments of scanpath fixation sequences. These matching "sequences of fixations over time" are a loose acronym for SoftMatch. Results indicate high degrees of statistical and substantive significance when scoring matches between scanpaths made during free-form viewing of unfamiliar stimuli. Applications of this method can be used to better understand bottom up perceptual processes extending to scanpath outlier detection, expertise analysis, pathological screening, and salience prediction.

摘要

最近的研究将眼球注视模式与他人的模式进行匹配,其中包含大量依赖于从早期生物信息学工作中借用的字符串编辑方法的研究。先前的研究表明,在匹配突变基因或扫描路径中无序的感兴趣区域时,字符串编辑方法容易出现假阴性结果。即使出现了使用新颖组合技术匹配氨基酸的新方法,扫描路径匹配仍然受到传统共线性方法的限制。这种方法由于对线性的重视程度很高,从而降低了区分两个人在观察同一刺激物时的自由观察扫描路径的能力。为了克服这一限制,我们在这里引入了一种新的方法,称为 SoftMatch,用于比较两对扫描路径。SoftMatch 与传统的扫描路径匹配有两种不同的方法:首先,通过使用分形曲线来保留局部性,将二维笛卡尔 (x,y) 坐标降维到一维 (h) 希尔伯特距离,其次通过使用离散 Fréchet 距离测量来组合固定匹配,扫描路径固定序列的段之间。这些匹配“随时间的固定序列”是 SoftMatch 的缩写。当对在自由观看不熟悉刺激物时进行的扫描路径之间的匹配进行评分时,结果表明具有高度的统计和实质意义。该方法的应用可以用于更好地理解从下至上的感知过程,扩展到扫描路径异常值检测、专业知识分析、病理筛查和显著性预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d86b/9570610/e70e4e90f28a/sensors-22-07438-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验