Suppr超能文献

使用分形几何评估眼动扫描路径异常值。

Assessment of eye-tracking scanpath outliers using fractal geometry.

作者信息

Newport Robert Ahadizad, Russo Carlo, Al Suman Abdulla, Di Ieva Antonio

机构信息

Computational NeuroSurgery (CNS) Lab, Department of Clinical Medicine - Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.

出版信息

Heliyon. 2021 Jul 20;7(7):e07616. doi: 10.1016/j.heliyon.2021.e07616. eCollection 2021 Jul.

Abstract

Outlier scanpaths identification is a crucial preliminary step in designing visual software, digital media analysis, radiology training and clustering participants in eye-tracking experiments. However, the task is challenging due to the visual irregularity of the scanpath shapes and the difficulty in dimensionality reduction due to geometric complexity. Conventional approaches have used heat maps to exclude scanpaths that lack a similarity pattern. However, the typically-used packages, such as ScanMatch and MultiMatch often generate discordant results when outlier identification is done empirically. This paper introduces a novel outlier evaluation approach by integrating the fractal dimension (FD), capturing the geometrical complexity of patterns, as an additional parameter with the heat map. This additional parameter is used to evaluate the degree of influence of a scanpath within a dataset. More specifically, the 2D Cartesian coordinates of a scanpath are fitted to a space filling 1D fractal curve to characterise its temporal FD. The FDs of the scanpaths are then compared to match their geometric complexity to one another. The findings indicate that the FD can be a beneficial additional parameter when evaluating the candidacy of poorly matching scanpaths as outliers and performs better at identifying unusual scanpaths than using other methods, including scanpath matching, Jaccard, or bounding box methods alone.

摘要

异常扫描路径识别是视觉软件设计、数字媒体分析、放射学培训以及眼动追踪实验中参与者聚类的关键初步步骤。然而,由于扫描路径形状的视觉不规则性以及几何复杂性导致的降维困难,该任务具有挑战性。传统方法使用热图来排除缺乏相似模式的扫描路径。然而,当凭经验进行异常值识别时,通常使用的软件包,如ScanMatch和MultiMatch,往往会产生不一致的结果。本文引入了一种新颖的异常值评估方法,通过整合分形维数(FD),它可以捕捉模式的几何复杂性,作为热图的一个附加参数。这个附加参数用于评估数据集中扫描路径的影响程度。更具体地说,将扫描路径的二维笛卡尔坐标拟合到空间填充的一维分形曲线上,以表征其时间分形维数。然后比较扫描路径的分形维数,以使其几何复杂性相互匹配。研究结果表明,在评估匹配不佳的扫描路径作为异常值的候选资格时,分形维数可以作为一个有益的附加参数,并且在识别异常扫描路径方面比单独使用其他方法(包括扫描路径匹配、杰卡德或边界框方法)表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d55b/8326737/4b0f935ec605/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验