Opt Express. 2022 Jul 4;30(14):25876-25890. doi: 10.1364/OE.462980.
We present a parallel Monte Carlo (MC) simulation platform for rapidly generating synthetic common-path optical coherence tomography (CP-OCT) A-scan image dataset for image-guided needle insertion. The computation time of the method has been evaluated on different configurations and 100000 A-scan images are generated based on 50 different eye models. The synthetic dataset is used to train an end-to-end convolutional neural network (Ascan-Net) to localize the Descemet's membrane (DM) during the needle insertion. The trained Ascan-Net has been tested on the A-scan images collected from the ex-vivo human and porcine cornea as well as simulated data and shows improved tracking accuracy compared to the result by using the Canny-edge detector.
我们提出了一个并行蒙特卡罗(MC)模拟平台,用于快速生成用于图像引导针插入的合成共路光学相干断层扫描(CP-OCT)A 扫描图像数据集。该方法的计算时间已在不同配置下进行了评估,并基于 50 个不同的眼睛模型生成了 100000 个 A 扫描图像。该合成数据集用于训练端到端卷积神经网络(Ascan-Net),以在针插入过程中定位角膜后弹力层(DM)。所训练的 Ascan-Net 已在从离体人眼和猪角膜以及模拟数据中采集的 A 扫描图像上进行了测试,并与使用 Canny 边缘检测的结果相比,显示出了更高的跟踪准确性。