IEEE J Biomed Health Inform. 2021 Aug;25(8):3029-3040. doi: 10.1109/JBHI.2021.3066208. Epub 2021 Aug 5.
Retinal layers segmentation in optical coherence tomography (OCT) images is a critical step in the diagnosis of numerous ocular diseases. Automatic layers segmentation requires separating each individual layer instance with accurate boundary detection, but remains a challenging task since it suffers from speckle noise, intensity inhomogeneity, and the low contrast around boundary. In this work, we proposed a boundary aware U-Net (BAU-Net) for retinal layers segmentation by detecting accurate boundary. Based on encoder-decoder architecture, we design a dual tasks framework with low-level outputs for boundary detection and high-level outputs for layers segmentation. Specifically, we first use the multi-scale input strategy to enrich the spatial information in the deep features of encoder. For low-level features from encoder, we design an edge aware (EA) module in skip connection to extract the pure edge features. Then, a U-structure feature enhanced (UFE) module is designed in all skip connections to enlarge the features receptive fields from the encoder. Besides, a canny edge fusion (CEF) module is introduced to aforementioned architecture, which can fuse the priory edge information from segmentation task to boundary detection branch for a better predication. Furthermore, we model each boundary as a vertical coordinates distribution for boundary detection. Based on this distribution, a topology guarantee loss with combined A-scan regression loss and structure loss is proposed to make an accurate and guaranteed topological boundary set. The method is evaluated on two public datasets and the results demonstrate that the BAU-Net achieves promising performance than other state-of-the-art methods.
光学相干断层扫描 (OCT) 图像中的视网膜层分割是诊断许多眼部疾病的关键步骤。自动层分割需要通过准确的边界检测来分离每个单独的层实例,但由于存在斑点噪声、强度不均匀和边界周围对比度低等问题,这仍然是一项具有挑战性的任务。在这项工作中,我们提出了一种基于边界感知的 U-Net (BAU-Net),通过检测准确的边界来进行视网膜层分割。基于编码器-解码器架构,我们设计了一个具有双任务框架的模型,其中包括用于边界检测的低级输出和用于层分割的高级输出。具体来说,我们首先使用多尺度输入策略来丰富编码器中深层特征的空间信息。对于来自编码器的低级特征,我们在跳过连接中设计了一个边缘感知 (EA) 模块,以提取纯边缘特征。然后,在所有跳过连接中设计了一个 U 结构特征增强 (UFE) 模块,以扩大从编码器接收的特征感受野。此外,还在上述架构中引入了一个 Canny 边缘融合 (CEF) 模块,它可以融合分割任务中的先验边缘信息到边界检测分支,以进行更好的预测。此外,我们将每个边界建模为垂直坐标分布,用于边界检测。基于这个分布,我们提出了一种拓扑保证损失,该损失结合了 A 扫描回归损失和结构损失,以实现准确且有保证的拓扑边界集。该方法在两个公共数据集上进行了评估,结果表明 BAU-Net 比其他最先进的方法具有更好的性能。