Suppr超能文献

基于卷积神经网络的 CP-OCT 传感器与视网膜下注射装置集成,用于视网膜边界跟踪和注射引导。

CNN-based CP-OCT sensor integrated with a subretinal injector for retinal boundary tracking and injection guidance.

机构信息

Johns Hopkins Univ., United States.

出版信息

J Biomed Opt. 2021 Jun;26(6). doi: 10.1117/1.JBO.26.6.068001.

Abstract

SIGNIFICANCE

Subretinal injection is an effective way of delivering transplant genes and cells to treat many degenerative retinal diseases. However, the technique requires high-dexterity and microscale precision of experienced surgeons, who have to overcome the physiological hand tremor and limited visualization of the subretinal space.

AIM

To automatically guide the axial motion of microsurgical tools (i.e., a subretinal injector) with microscale precision in real time using a fiber-optic common-path swept-source optical coherence tomography distal sensor.

APPROACH

We propose, implement, and study real-time retinal boundary tracking of A-scan optical coherence tomography (OCT) images using a convolutional neural network (CNN) for automatic depth targeting of a selected retinal boundary for accurate subretinal injection guidance. A simplified 1D U-net is used for the retinal layer segmentation on A-scan OCT images. A Kalman filter, combining retinal boundary position measurement by CNN and velocity measurement by cross correlation between consecutive A-scan images, is applied to optimally estimate the retinal boundary position. Unwanted axial motions of the surgical tools are compensated by a piezoelectric linear motor based on the retinal boundary tracking.

RESULTS

CNN-based segmentation on A-scan OCT images achieves the mean unsigned error (MUE) of ∼3  pixels (8.1  μm) using an ex vivo bovine retina model. GPU parallel computing allows real-time inference (∼2  ms) and thus real-time retinal boundary tracking. Involuntary tremors, which include low-frequency draft in hundreds of micrometers and physiological tremors in tens of micrometers, are compensated effectively. The standard deviations of photoreceptor (PR) and choroid (CH) boundary positions get as low as 10.8  μm when the depth targeting is activated.

CONCLUSIONS

A CNN-based common-path OCT distal sensor successfully tracks retinal boundaries, especially the PR/CH boundary for subretinal injection, and automatically guides the tooltip's axial position in real time. The microscale depth targeting accuracy of our system shows its promising possibility for clinical application.

摘要

意义

视网膜下注射是将移植基因和细胞递送至治疗多种退行性视网膜疾病的有效方法。然而,该技术需要经验丰富的外科医生具备高精度和微尺度的操作技巧,他们必须克服生理手部震颤和视网膜下空间有限的可视化问题。

目的

使用光纤共路扫频光源光学相干断层扫描(OCT)远端传感器,以微尺度精度实时自动引导微外科工具(即视网膜下注射器)的轴向运动。

方法

我们提出、实现并研究了基于卷积神经网络(CNN)对 A 扫描 OCT 图像的实时视网膜边界跟踪,用于自动确定选定视网膜边界的深度目标,从而实现准确的视网膜下注射引导。简化的 1D U-net 用于对 A 扫描 OCT 图像进行视网膜层分割。将卡尔曼滤波器(同时结合 CNN 进行的视网膜边界位置测量和连续 A 扫描图像之间的互相关进行的速度测量)应用于最优地估计视网膜边界位置。通过基于视网膜边界跟踪的压电线性电机来补偿手术工具的不必要轴向运动。

结果

在离体牛眼模型中,基于 CNN 的 A 扫描 OCT 图像分割实现了约 3 个像素(8.1μm)的平均无符号误差(MUE)。GPU 并行计算允许实时推断(约 2ms),从而实现实时视网膜边界跟踪。可以有效补偿包括数百微米低频草稿和数十微米生理震颤在内的不自主震颤。当激活深度目标时,感光细胞(PR)和脉络膜(CH)边界位置的标准偏差可低至 10.8μm。

结论

基于 CNN 的共路 OCT 远端传感器成功地跟踪了视网膜边界,特别是用于视网膜下注射的 PR/CH 边界,并实时自动引导工具的轴向位置。我们的系统的微尺度深度目标精度显示了其在临床应用中的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e4/8242537/d7b52be63cda/JBO-026-068001-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验