Suppr超能文献

基于最优判别超平面和可解释判别矩形混合模型的单试次运动想象脑电图意图识别

Single-trial motor imagery electroencephalogram intention recognition by optimal discriminant hyperplane and interpretable discriminative rectangle mixture model.

作者信息

Fu Rongrong, Xu Dong, Li Weishuai, Shi Peiming

机构信息

Measurement Technology and Instrumentation Key Lab of Hebei Province, Yanshan University, Qinhuangdao, 066004 China.

出版信息

Cogn Neurodyn. 2022 Oct;16(5):1073-1085. doi: 10.1007/s11571-021-09768-w. Epub 2022 Jan 29.

Abstract

UNLABELLED

Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane-common spatial subspace decomposition (ODH-CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal discriminant vectors corresponding to the extreme value of the criterion are solved and constructed into the -dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the -dimensional optimal projection space to obtain the optimal -dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11571-021-09768-w.

摘要

未标注

空间滤波在脑机接口(BCI)系统中被广泛应用,以增强脑电图(EEG)信号的特征。在本研究中,提出了一种基于空间域滤波的EEG特征提取方法,即最优判别超平面-公共空间子空间分解(ODH-CSSD)。具体而言,通过公共空间子空间分解(CSSD)算法从原始EEG信号中提取多维EEG特征,并建立最优特征准则以找到多维最优投影空间。一种经典的数据维度优化方法是使用与最大特征值对应的集总协方差矩阵的特征向量。然后,将代价函数定义为判别准则的极值,并求解对应于该准则极值的正交判别向量,并将其构建为n维最优特征空间。最后,将多维EEG特征投影到n维最优投影空间中,以获得最优的n维EEG特征。此外,本研究涉及从运动想象EEG数据集中提取二维和三维最优EEG特征,并使用可解释判别矩形混合模型(DRMM)识别最优EEG特征。实验结果表明,DRMM识别二维最优特征的准确率超过0.91,最高准确率甚至达到0.975。同时,DRMM对二维最优特征具有最稳定的识别准确率,其平均聚类准确率达到0.942,DRMM的准确率与FCM和K-means的准确率之间的差距可达0.26。对于最优三维特征,对于大多数受试者,DRMM的聚类准确率高于FCM和K-means。总体而言,DRMM获得的值域可以清楚地解释每个聚类的差异,值得注意的是,通过最优投影对多维EEG特征的优化优于Fisher比率,该方法为BCI的应用提供了一种选择。

补充信息

在线版本包含可在10.1007/s11571-021-09768-w获取的补充材料。

相似文献

2
[Single trial classification of motor imagery electroencephalogram based on Fisher criterion].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Oct 25;35(5):774-778. doi: 10.7507/1001-5515.201701040.
3
Motor intent recognition of multi-feature fusion EEG signals by UMAP algorithm.
Med Biol Eng Comput. 2023 Oct;61(10):2665-2676. doi: 10.1007/s11517-023-02878-z. Epub 2023 Jul 8.
4
Multi-domain feature joint optimization based on multi-view learning for improving the EEG decoding.
Front Hum Neurosci. 2023 Dec 7;17:1292428. doi: 10.3389/fnhum.2023.1292428. eCollection 2023.
5
Recognition of EEG Signal Motor Imagery Intention Based on Deep Multi-View Feature Learning.
Sensors (Basel). 2020 Jun 20;20(12):3496. doi: 10.3390/s20123496.
6
Statistically significant features improve binary and multiple Motor Imagery task predictions from EEGs.
Front Hum Neurosci. 2023 Jul 11;17:1223307. doi: 10.3389/fnhum.2023.1223307. eCollection 2023.
8
An Adaptive EEG Classification Algorithm Based on CSSD and ELM_Kernel for Small Training Samples.
J Healthc Eng. 2022 Dec 28;2022:4509612. doi: 10.1155/2022/4509612. eCollection 2022.
9
Optimized Projection and Fisher Discriminative Dictionary Learning for EEG Emotion Recognition.
Front Psychol. 2021 Jun 28;12:705528. doi: 10.3389/fpsyg.2021.705528. eCollection 2021.

本文引用的文献

1
EEG based cognitive task classification using multifractal detrended fluctuation analysis.
Cogn Neurodyn. 2021 Dec;15(6):999-1013. doi: 10.1007/s11571-021-09684-z. Epub 2021 May 30.
2
NeuroBayesSLAM: Neurobiologically inspired Bayesian integration of multisensory information for robot navigation.
Neural Netw. 2020 Jun;126:21-35. doi: 10.1016/j.neunet.2020.02.023. Epub 2020 Mar 4.
4
Improving Performance of Devanagari Script Input-Based P300 Speller Using Deep Learning.
IEEE Trans Biomed Eng. 2019 Nov;66(11):2992-3005. doi: 10.1109/TBME.2018.2875024. Epub 2018 Oct 9.
5
Calculation and Analysis of Microstate Related to Variation in Executed and Imagined Movement of Force of Hand Clenching.
Comput Intell Neurosci. 2018 Aug 27;2018:9270685. doi: 10.1155/2018/9270685. eCollection 2018.
6
Developing a Three- to Six-State EEG-Based Brain-Computer Interface for a Virtual Robotic Manipulator Control.
IEEE Trans Biomed Eng. 2019 Apr;66(4):977-987. doi: 10.1109/TBME.2018.2865941. Epub 2018 Aug 17.
7
A Novel Method of Building Functional Brain Network Using Deep Learning Algorithm with Application in Proficiency Detection.
Int J Neural Syst. 2019 Feb;29(1):1850015. doi: 10.1142/S0129065718500156. Epub 2018 Apr 11.
8
Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With EEG.
IEEE Trans Neural Syst Rehabil Eng. 2017 Sep;25(9):1641-1652. doi: 10.1109/TNSRE.2016.2627809. Epub 2016 Nov 10.
9
A comparison of ERP spatial filtering methods for optimal mental workload estimation.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:7254-7. doi: 10.1109/EMBC.2015.7320066.
10
Characteristics of fast-spiking neurons in the striatum of behaving monkeys.
Neurosci Res. 2016 Apr;105:2-18. doi: 10.1016/j.neures.2015.10.003. Epub 2015 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验