Mistiri Mohamed El, Rivera Daniel E, Klasnja Predrag, Park Junghwan, Hekler Eric
Control Systems Engineering Laboratory, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 USA.
Division of Biomedical and Health Informatics, School of Information, University of Michigan, Ann Arbor, MU 48109 USA.
Proc Am Control Conf. 2022 Jun;2022:1392-1397. doi: 10.23919/acc53348.2022.9867350. Epub 2022 Sep 5.
Many individuals fail to engage in sufficient physical activity (PA), despite its well-known health benefits. This paper examines Model Predictive Control (MPC) as a means to deliver optimized, personalized behavioral interventions to improve PA, as reflected by the number of steps walked per day. Using a health behavior fluid analogy model representing Social Cognitive Theory, a series of diverse strategies are evaluated in simulated scenarios that provide insights into the most effective means for implementing MPC in PA behavioral interventions. The interplay of measurement, information, and decision is explored, with the results illustrating MPC's potential to deliver feasible, personalized, and user-friendly behavioral interventions, even under circumstances involving limited measurements. Our analysis demonstrates the effectiveness of sensibly formulated constrained MPC controllers for optimizing PA interventions, which is a preliminary though essential step to experimental evaluation of constrained MPC control strategies under real-life conditions.
尽管体育活动(PA)对健康有益是众所周知的,但许多人仍未进行足够的体育活动。本文探讨了模型预测控制(MPC)作为一种提供优化的个性化行为干预措施以改善体育活动的方法,这通过每天步行的步数来体现。使用代表社会认知理论的健康行为流体类比模型,在模拟场景中评估了一系列不同的策略,这些策略为在体育活动行为干预中实施MPC的最有效方法提供了见解。探讨了测量、信息和决策之间的相互作用,结果表明即使在测量有限的情况下,MPC也有潜力提供可行、个性化且用户友好的行为干预措施。我们的分析证明了合理制定的约束MPC控制器在优化体育活动干预方面的有效性,这是在现实条件下对约束MPC控制策略进行实验评估的初步但至关重要的一步。