Khan Owais, El Mistiri Mohamed, Rivera Daniel E, Martin César A, Hekler Eric
Control Systems Engineering Laboratory, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 USA.
Escuela Superior Politécnica del Litoral (ESPOL), Facultad de Ingeniería en Electricidad y Computación, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
Proc IEEE Conf Decis Control. 2022 Dec;2022:2586-2593. doi: 10.1109/cdc51059.2022.9992932. Epub 2023 Jan 10.
Hybrid Model Predictive Control (HMPC) is presented as a decision-making tool for novel behavioral interventions to increase physical activity in sedentary adults, such as . A broad-based HMPC formulation for mixed logical dynamical (MLD) systems relevant to problems in behavioral medicine is developed and illustrated on a representative participant model arising from the study. The MLD model is developed based on the requirement of granting points for meeting daily step goals and categorical input variables. The algorithm features three degrees-of-freedom tuning for setpoint tracking, measured and unmeasured disturbance rejection that facilitates controller robustness; disturbance anticipation further improves performance for upcoming events such as weekends and weather forecasts. To avoid the corresponding mixed-integer quadratic problem (MIQP) from becoming infeasible, slack variables are introduced in the objective function. Simulation results indicate that the proposed HMPC scheme effectively manages hybrid dynamics, setpoint tracking, disturbance rejection, and the transition between the two phases of the intervention (initiation and maintenance) and is suitable for evaluation in clinical trials.
混合模型预测控制(HMPC)被提出作为一种决策工具,用于制定新型行为干预措施,以增加久坐不动的成年人的身体活动,例如 。针对行为医学问题中相关的混合逻辑动态(MLD)系统,开发了一种基础广泛的HMPC公式,并在一项研究产生的代表性参与者模型上进行了说明。MLD模型是根据为达到每日步数目标和分类输入变量授予积分的要求而开发的。该算法具有用于设定值跟踪、测量和未测量干扰抑制的三自由度调整,这有助于提高控制器的鲁棒性;干扰预测进一步提高了对即将到来的事件(如周末和天气预报)的性能。为避免相应的混合整数二次问题(MIQP)变得不可行,在目标函数中引入了松弛变量。仿真结果表明,所提出的HMPC方案有效地管理了混合动态、设定值跟踪、干扰抑制以及干预两个阶段(启动和维持)之间的转换,适用于临床试验评估。