Suppr超能文献

基于等离子体流体的介电纳米物体近场光阱捕获:使用金纳米岛传感器芯片

Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips.

作者信息

Qiu Guangyu, Du Ying, Guo Yujia, Meng Yingchao, Gai Zhibo, Zhang Ming, Wang Jing, deMello Andrew

机构信息

Institute for Environmental Engineering, ETH Zürich, Stefano-Franscini-Platz 3, CH-8093Zürich, Switzerland.

Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf8600, Switzerland.

出版信息

ACS Appl Mater Interfaces. 2022 Oct 26;14(42):47409-47419. doi: 10.1021/acsami.2c12651. Epub 2022 Oct 14.

Abstract

Near-field optical manipulation has been widely used for guiding and trapping nanoscale objects close to an optical-active interface. This near-field manipulation opens opportunities for next-generation biosensing with the capability of large-area trapping and in situ detection. In this article, we used the finite element method (FEM) to analyze the motion mechanism of nano-objects (50-500 nm) in the near-field optics, especially localized surface plasmon resonance (LSPR). The size-dependent optical forces and hydrodynamic forces of subwavelength nanoparticles (<500 nm) in different hydrodynamic velocity fields were calculated. When the strength of the local electric field was increased, LSPR with two-dimensional gold nanoislands (AuNIs) showed improved capability for manipulating nano-objects near the vicinity of the AuNI interface. Through the experiments of interferometric testing 50-500 nm nano-objects with constant number concentration or volume fraction, it was confirmed that the local plasmonic near-field was able to trap the dielectric polystyrene beads smaller than 200 nm. The plasmofluidic system was further verified by testing biological nanovesicles such as exosomes (40-200 nm) and high- and low-density lipoproteins (10-200 nm). This concept of direct dielectric nano-objects manipulation enables large-scale parallel trapping and dynamic sensing of biological nanovesicles without the need of molecular binding tethers or labeling.

摘要

近场光学操控已被广泛用于引导和捕获靠近光学活性界面的纳米级物体。这种近场操控为下一代生物传感带来了机遇,具备大面积捕获和原位检测的能力。在本文中,我们使用有限元方法(FEM)分析了纳米物体(50 - 500纳米)在近场光学中的运动机制,特别是局域表面等离子体共振(LSPR)。计算了不同流体动力学速度场中亚波长纳米颗粒(<500纳米)的尺寸依赖性光学力和流体动力。当局部电场强度增加时,二维金纳米岛(AuNIs)的LSPR显示出在AuNI界面附近操控纳米物体的能力有所提高。通过对浓度或体积分数恒定的50 - 500纳米纳米物体进行干涉测量实验,证实了局部等离子体近场能够捕获小于200纳米的介电聚苯乙烯珠。通过测试生物纳米囊泡如外泌体(40 - 200纳米)和高密度及低密度脂蛋白(10 - 200纳米),进一步验证了等离子体流体系统。这种直接操控介电纳米物体的概念能够实现对生物纳米囊泡的大规模并行捕获和动态传感,而无需分子结合系链或标记。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验