Suppr超能文献

通过介电-等离子体混合纳米蝴蝶结实现高稳定性和低功耗纳米生物物体捕获。

High Stability and Low Power Nanometric Bio-Objects Trapping through Dielectric-Plasmonic Hybrid Nanobowtie.

机构信息

Optoelectronics Laboratory, Politecnico di Bari, Via E. Orabona 6, 70125 Bari, Italy.

CNR NANOTEC-Institute of Nanotechnology, Via per Monteroni, 73200 Lecce, Italy.

出版信息

Biosensors (Basel). 2024 Aug 13;14(8):390. doi: 10.3390/bios14080390.

Abstract

Micro and nano-scale manipulation of living matter is crucial in biomedical applications for diagnostics and pharmaceuticals, facilitating disease study, drug assessment, and biomarker identification. Despite advancements, trapping biological nanoparticles remains challenging. Nanotweezer-based strategies, including dielectric and plasmonic configurations, show promise due to their efficiency and stability, minimizing damage without direct contact. Our study uniquely proposes an inverted hybrid dielectric-plasmonic nanobowtie designed to overcome the primary limitations of existing dielectric-plasmonic systems, such as high costs and manufacturing complexity. This novel configuration offers significant advantages for the stable and long-term trapping of biological objects, including strong energy confinement with reduced thermal effects. The metal's efficient light reflection capability results in a significant increase in energy field confinement (EC) within the trapping site, achieving an enhancement of over 90% compared to the value obtained with the dielectric nanobowtie. Numerical simulations confirm the successful trapping of 100 nm viruses, demonstrating a trapping stability greater than 10 and a stiffness of 2.203 fN/nm. This configuration ensures optical forces of approximately 2.96 fN with an input power density of 10 mW/μm while preserving the temperature, chemical-biological properties, and shape of the biological sample.

摘要

对生物物质进行微观和纳米级别的操控在生物医学应用中至关重要,可用于诊断和药物领域,有助于疾病研究、药物评估和生物标志物的识别。尽管已经取得了进展,但仍然难以捕获生物纳米颗粒。基于纳米镊子的策略,包括介电和等离子体配置,由于其效率和稳定性而显示出前景,可以在不直接接触的情况下最小化损伤。我们的研究独特地提出了一种倒置混合介电-等离子体纳米蝴蝶结,旨在克服现有介电-等离子体系统的主要限制,例如高成本和制造复杂性。这种新型结构为稳定和长期捕获生物物体提供了显著优势,包括具有减小的热效应的强能量限制。金属的高效光反射能力导致捕获位置内的能量场限制(EC)显著增加,与介电纳米蝴蝶结获得的值相比,增强超过 90%。数值模拟证实了 100nm 病毒的成功捕获,表现出大于 10 的捕获稳定性和 2.203 fN/nm 的刚度。该结构确保了约 2.96 fN 的光学力,输入功率密度为 10 mW/μm,同时保持了生物样本的温度、化学-生物特性和形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3413/11353118/93c0b9a17532/biosensors-14-00390-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验