Yao Peter, Shavit Sagit Stern, Shin James, Selesnick Samuel, Phillips C Douglas, Strauss Sara B
Weill Cornell Medical College, Weill Cornell Medicine.
Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine.
Otol Neurotol. 2022 Dec 1;43(10):1227-1239. doi: 10.1097/MAO.0000000000003693. Epub 2022 Oct 14.
Surveillance of postoperative vestibular schwannomas currently relies on manual segmentation and measurement of the tumor by content experts, which is both labor intensive and time consuming. We aimed to develop and validate deep learning models for automatic segmentation of postoperative vestibular schwannomas on gadolinium-enhanced T1-weighted magnetic resonance imaging (GdT1WI) and noncontrast high-resolution T2-weighted magnetic resonance imaging (HRT2WI).
A supervised machine learning approach using a U-Net model was applied to segment magnetic resonance imaging images into pixels representing vestibular schwannoma and background pixels.
Tertiary care hospital.
Our retrospective data set consisted of 122 GdT1WI and 122 HRT2WI studies in 82 postoperative adult patients with a vestibular schwannoma treated with subtotal surgical resection between September 1, 2007, and April 17, 2018. Forty-nine percent of our cohort was female, the mean age at the time of surgery was 49.8 years, and the median time from surgery to follow-up scan was 2.26 years.
N/A.
Tumor areas were manually segmented in axial images and used as ground truth for training and evaluation of the model. We measured the Dice score of the predicted segmentation results in comparison to manual segmentations from experts to assess the model's accuracy.
The GdT1WI model achieved a Dice score of 0.89, and the HRT2WI model achieved a Dice score of 0.85.
We demonstrated that postoperative vestibular schwannomas can be accurately segmented on GdT1WI and HRT2WI without human intervention using deep learning. This artificial intelligence technology has the potential to improve the postoperative surveillance and management of patients with vestibular schwannomas.
目前,术后前庭神经鞘瘤的监测依赖于内容专家对肿瘤进行手动分割和测量,这既耗费人力又耗时。我们旨在开发并验证深度学习模型,用于在钆增强T1加权磁共振成像(GdT1WI)和非增强高分辨率T2加权磁共振成像(HRT2WI)上对术后前庭神经鞘瘤进行自动分割。
采用一种使用U-Net模型的监督式机器学习方法,将磁共振成像图像分割为代表前庭神经鞘瘤的像素和背景像素。
三级医疗中心。
我们的回顾性数据集包括2007年9月1日至2018年4月17日期间接受次全手术切除治疗的82例成年术后前庭神经鞘瘤患者的122份GdT1WI和122份HRT2WI研究。我们队列中的49%为女性,手术时的平均年龄为49.8岁,从手术到随访扫描的中位时间为2.26年。
无。
在轴向图像上手动分割肿瘤区域,并将其用作模型训练和评估的真值。我们将预测分割结果的Dice分数与专家的手动分割结果进行比较,以评估模型的准确性。
GdT1WI模型的Dice分数为0.89,HRT2WI模型的Dice分数为0.85。
我们证明了使用深度学习可以在无需人工干预的情况下,在GdT1WI和HRT2WI上准确分割术后前庭神经鞘瘤。这种人工智能技术有潜力改善前庭神经鞘瘤患者的术后监测和管理。