Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman11733, Jordan.
Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman11942, Jordan.
ACS Appl Bio Mater. 2022 Nov 21;5(11):5156-5164. doi: 10.1021/acsabm.2c00537. Epub 2022 Oct 14.
Amphotericin B (AmB) is one of the first-line treatments for systemic fungal infections, yet it suffers from dose-limiting systemic toxicity and high cost of less toxic lipid-based formulations. Here, we report on a facile approach to synthesize an AmB-loaded nanomedicine by leveraging plant-inspired oxidative self-polymerization of the ubiquitous polyphenol quercetin (QCT). Polymerized QCT nanoparticles (pQCT NPs) were formed, loaded with AmB, and functionalized with poly(ethylene glycol) (PEG) to impart steric stability in a simple procedure that relied on mixing followed by dialysis. The AmB-loaded NPs (AmB@pQCT-PEG NPs) were characterized by a drug loading efficiency of more than 90%, a particle size of around 160 nm, a polydispersity index of 0.07, and a partially negative surface charge. AmB release from the NPs was sustained over several days and followed the Korsmeyer-Peppas model with a release exponent () value >0.85, denoting drug release by polymer relaxation and swelling. A hemolysis assay revealed the NPs to be highly biocompatible, with negligible hemolytic activity and 30-60% hemolysis after 1 and 24 h of incubation with erythrocytes, respectively, across a wide concentration range (6.25-100.00 μg/mL). Conversely, equivalent concentrations of free AmB caused 90-100% hemolysis within the same timeframe. Importantly, AmB@pQCT-PEG NPs outperformed free AmB in microbial susceptibility assays on , achieving a minimum inhibitory concentration of 62.5 ng/mL after 48 h of incubation, which was 2-fold lower than the free drug. Our results demonstrate that pQCT NPs may serve as a viable AmB delivery platform for the treatment of fungal infections and potentially other AmB-susceptible pathogens.
两性霉素 B(AmB)是治疗系统性真菌感染的一线药物之一,但它存在剂量限制的全身毒性和较贵的毒性较低的脂质体制剂的问题。在这里,我们报告了一种简便的方法,通过利用普遍存在的多酚槲皮素(QCT)的植物启发的氧化自聚合来合成两性霉素 B 负载的纳米药物。聚合的 QCT 纳米颗粒(pQCT NPs)形成,负载两性霉素 B,并通过聚乙二醇(PEG)官能化以赋予在简单的混合后透析过程中的空间稳定性。负载两性霉素 B 的 NPs(AmB@pQCT-PEG NPs)的药物载效率超过 90%,粒径约为 160nm,多分散指数为 0.07,表面带部分负电荷。 NPs 中的两性霉素 B 释放持续数天,并遵循 Korsmeyer-Peppas 模型,释放指数(n)值大于 0.85,表明药物通过聚合物松弛和溶胀释放。溶血试验表明,该 NPs 具有高度的生物相容性,在与红细胞孵育 1 和 24 小时后,溶血率分别为 30-60%,在很宽的浓度范围内(6.25-100.00μg/mL),溶血活性可忽略不计。相比之下,相同时间内,相同浓度的游离两性霉素 B 导致 90-100%的溶血。重要的是,AmB@pQCT-PEG NPs 在对 的微生物敏感性测定中优于游离两性霉素 B,孵育 48 小时后达到 62.5ng/mL 的最小抑菌浓度,比游离药物低 2 倍。我们的结果表明,pQCT NPs 可作为两性霉素 B 治疗真菌感染和潜在其他两性霉素 B 敏感病原体的有效递送平台。