文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于卷积神经网络的内镜图像早期食管癌人工智能诊断:一项荟萃分析。

Convolutional neural network-based artificial intelligence for the diagnosis of early esophageal cancer based on endoscopic images: A meta-analysis.

机构信息

Department of Thoracic Surgery, Chongqing General Hospital, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing, China.

Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China.

出版信息

Saudi J Gastroenterol. 2022 Sep-Oct;28(5):332-340. doi: 10.4103/sjg.sjg_178_22.


DOI:10.4103/sjg.sjg_178_22
PMID:35848703
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9752541/
Abstract

BACKGROUND: Early screening and treatment of esophageal cancer (EC) is particularly important for the survival and prognosis of patients. However, early EC is difficult to diagnose by a routine endoscopic examination. Therefore, convolutional neural network (CNN)-based artificial intelligence (AI) has become a very promising method in the diagnosis of early EC using endoscopic images. The aim of this study was to evaluate the diagnostic performance of CNN-based AI for detecting early EC based on endoscopic images. METHODS: A comprehensive search was performed to identify relevant English articles concerning CNN-based AI in the diagnosis of early EC based on endoscopic images (from the date of database establishment to April 2022). The pooled sensitivity (SEN), pooled specificity (SPE), positive likelihood ratio (LR+), negative likelihood ratio (LR-), diagnostic odds ratio (DOR) with 95% confidence interval (CI), summary receiver operating characteristic (SROC) curve, and area under the curve (AUC) for the accuracy of CNN-based AI in the diagnosis of early EC based on endoscopic images were calculated. We used the I test to assess heterogeneity and investigated the source of heterogeneity by performing meta-regression analysis. Publication bias was assessed using Deeks' funnel plot asymmetry test. RESULTS: Seven studies met the eligibility criteria. The SEN and SPE were 0.90 (95% confidence interval [CI]: 0.82-0.94) and 0.91 (95% CI: 0.79-0.96), respectively. The LR+ of the malignant ultrasonic features was 9.8 (95% CI: 3.8-24.8) and the LR- was 0.11 (95% CI: 0.06-0.21), revealing that CNN-based AI exhibited an excellent ability to confirm or exclude early EC on endoscopic images. Additionally, SROC curves showed that the AUC of the CNN-based AI in the diagnosis of early EC based on endoscopic images was 0.95 (95% CI: 0.93-0.97), demonstrating that CNN-based AI has good diagnostic value for early EC based on endoscopic images. CONCLUSIONS: Based on our meta-analysis, CNN-based AI is an excellent diagnostic tool with high sensitivity, specificity, and AUC in the diagnosis of early EC based on endoscopic images.

摘要

背景:早期筛查和治疗食管癌(EC)对患者的生存和预后尤为重要。然而,常规内镜检查对早期 EC 诊断困难。因此,基于卷积神经网络(CNN)的人工智能(AI)已成为内镜图像诊断早期 EC 的一种很有前途的方法。本研究旨在评估基于内镜图像的 CNN 人工智能诊断早期 EC 的诊断性能。

方法:从数据库建立日期到 2022 年 4 月,全面检索有关基于内镜图像的 CNN 人工智能诊断早期 EC 的英文文献。计算基于内镜图像的 CNN 人工智能诊断早期 EC 的汇总敏感度(SEN)、汇总特异度(SPE)、阳性似然比(LR+)、阴性似然比(LR-)、诊断比值比(DOR)及其 95%置信区间(CI)、汇总受试者工作特征(SROC)曲线和曲线下面积(AUC)。采用 I 检验评估异质性,并通过进行 meta 回归分析来探究异质性来源。采用 Deeks 漏斗图不对称检验评估发表偏倚。

结果:符合纳入标准的研究有 7 项。SEN 和 SPE 分别为 0.90(95%CI:0.82-0.94)和 0.91(95%CI:0.79-0.96)。恶性超声特征的 LR+为 9.8(95%CI:3.8-24.8),LR-为 0.11(95%CI:0.06-0.21),提示基于 CNN 的 AI 在内镜图像上对早期 EC 的确认或排除具有出色的能力。此外,SROC 曲线显示,基于内镜图像的 CNN 人工智能在早期 EC 诊断中的 AUC 为 0.95(95%CI:0.93-0.97),表明基于 CNN 的 AI 对早期 EC 具有良好的诊断价值。

结论:基于我们的荟萃分析,基于 CNN 的 AI 是一种出色的诊断工具,在基于内镜图像的早期 EC 诊断中具有较高的敏感度、特异度和 AUC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ff/9752541/34fb0fc09883/SJG-28-332-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ff/9752541/50f09d5aadea/SJG-28-332-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ff/9752541/7001df03ee15/SJG-28-332-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ff/9752541/34fb0fc09883/SJG-28-332-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ff/9752541/50f09d5aadea/SJG-28-332-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ff/9752541/7001df03ee15/SJG-28-332-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1ff/9752541/34fb0fc09883/SJG-28-332-g003.jpg

相似文献

[1]
Convolutional neural network-based artificial intelligence for the diagnosis of early esophageal cancer based on endoscopic images: A meta-analysis.

Saudi J Gastroenterol. 2022

[2]
MRI-based radiomics for the diagnosis of triple-negative breast cancer: a meta-analysis.

Clin Radiol. 2022-9

[3]
Meta-analysis of machine learning models for the diagnosis of central precocious puberty based on clinical, hormonal (laboratory) and imaging data.

Front Endocrinol (Lausanne). 2024

[4]
Application of artificial intelligence in the diagnosis of subepithelial lesions using endoscopic ultrasonography: a systematic review and meta-analysis.

Front Oncol. 2022-8-15

[5]
Differential diagnosis for esophageal protruded lesions using a deep convolution neural network in endoscopic images.

Gastrointest Endosc. 2021-6

[6]
Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysis.

World J Gastrointest Oncol. 2023-11-15

[7]
Deep learning or radiomics based on CT for predicting the response of gastric cancer to neoadjuvant chemotherapy: a meta-analysis and systematic review.

Front Oncol. 2024-3-27

[8]
Accuracy of artificial intelligence-assisted detection of esophageal cancer and neoplasms on endoscopic images: A systematic review and meta-analysis.

J Dig Dis. 2021-6

[9]
Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging.

J Gastroenterol Hepatol. 2021-2

[10]
Diagnostic Performance of Artificial Intelligence-Based Models for the Detection of Early Esophageal Cancers in Barret's Esophagus: A Meta-Analysis of Patient-Based Studies.

Cureus. 2021-6-4

引用本文的文献

[1]
Artificial Intelligence Performance in Image-Based Cancer Identification: Umbrella Review of Systematic Reviews.

J Med Internet Res. 2025-4-1

[2]
Diagnostic Accuracy of Artificial Intelligence in Endoscopy: Umbrella Review.

JMIR Med Inform. 2024-7-15

[3]
Identification of runner fatigue stages based on inertial sensors and deep learning.

Front Bioeng Biotechnol. 2023-11-17

[4]
The Advent of Domain Adaptation into Artificial Intelligence for Gastrointestinal Endoscopy and Medical Imaging.

Diagnostics (Basel). 2023-9-22

[5]
The Saudi Gastroenterology Association guidelines for quality indicators in gastrointestinal endoscopic procedures.

Saudi J Gastroenterol. 2023

本文引用的文献

[1]
Effect of adding magnifying BLI, magnifying NBI, and iodine staining to white light imaging in diagnosis of early esophageal cancer.

Endosc Int Open. 2021-12-14

[2]
Evolutionary Deep Attention Convolutional Neural Networks for 2D and 3D Medical Image Segmentation.

J Digit Imaging. 2021-12

[3]
Early Esophageal Cancer: What the Gastroenterologist Needs to Know.

Gastroenterol Clin North Am. 2021-12

[4]
Application of Artificial Intelligence in Early Gastric Cancer Diagnosis.

Digestion. 2022

[5]
Recent advances in early esophageal cancer: diagnosis and treatment based on endoscopy.

Postgrad Med. 2021-8

[6]
Effect of miR-630 expression on esophageal cancer cell invasion and migration.

J Clin Lab Anal. 2021-6

[7]
[Application and Progress of Convolutional Neural Network-based Pathological Diagnosis of Gastric Cancer].

Sichuan Da Xue Xue Bao Yi Xue Ban. 2021-3

[8]
Prediction Model of Long-term Survival After Esophageal Cancer Surgery.

Ann Surg. 2021-5-1

[9]
Statistical Methods for Quantifying Between-study Heterogeneity in Meta-analysis with Focus on Rare Binary Events.

Stat Interface. 2020

[10]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索