School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
J Neurointerv Surg. 2023 Mar;15(3):262-271. doi: 10.1136/jnis-2022-019456. Epub 2022 Nov 14.
Subarachnoid hemorrhage from cerebral aneurysm rupture is a major cause of morbidity and mortality. Early aneurysm identification, aided by automated systems, may improve patient outcomes. Therefore, a systematic review and meta-analysis of the diagnostic accuracy of artificial intelligence (AI) algorithms in detecting cerebral aneurysms using CT, MRI or DSA was performed.
MEDLINE, Embase, Cochrane Library and Web of Science were searched until August 2021. Eligibility criteria included studies using fully automated algorithms to detect cerebral aneurysms using MRI, CT or DSA. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis: Diagnostic Test Accuracy (PRISMA-DTA), articles were assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Meta-analysis included a bivariate random-effect model to determine pooled sensitivity, specificity, and area under the receiver operator characteristic curve (ROC-AUC).
CRD42021278454.
43 studies were included, and 41/43 (95%) were retrospective. 34/43 (79%) used AI as a standalone tool, while 9/43 (21%) used AI assisting a reader. 23/43 (53%) used deep learning. Most studies had high bias risk and applicability concerns, limiting conclusions. Six studies in the standalone AI meta-analysis gave (pooled) 91.2% (95% CI 82.2% to 95.8%) sensitivity; 16.5% (95% CI 9.4% to 27.1%) false-positive rate (1-specificity); 0.936 ROC-AUC. Five reader-assistive AI studies gave (pooled) 90.3% (95% CI 88.0% - 92.2%) sensitivity; 7.9% (95% CI 3.5% to 16.8%) false-positive rate; 0.910 ROC-AUC.
AI has the potential to support clinicians in detecting cerebral aneurysms. Interpretation is limited due to high risk of bias and poor generalizability. Multicenter, prospective studies are required to assess AI in clinical practice.
脑动脉瘤破裂导致的蛛网膜下腔出血是发病率和死亡率的主要原因。借助自动化系统早期识别动脉瘤可能会改善患者的预后。因此,我们对使用 CT、MRI 或 DSA 的人工智能(AI)算法检测脑动脉瘤的诊断准确性进行了系统评价和荟萃分析。
我们检索了 MEDLINE、Embase、Cochrane 图书馆和 Web of Science,截至 2021 年 8 月。纳入标准包括使用全自动算法使用 MRI、CT 或 DSA 检测脑动脉瘤的研究。根据系统评价和荟萃分析的首选报告项目:诊断准确性测试(PRISMA-DTA),使用诊断准确性研究的质量评估 2(QUADAS-2)评估文章。荟萃分析包括二元随机效应模型,以确定汇总敏感性、特异性和接收者操作特征曲线下面积(ROC-AUC)。
CRD42021278454。
共纳入 43 项研究,其中 41/43(95%)为回顾性研究。34/43(79%)项研究使用 AI 作为独立工具,9/43(21%)项研究使用 AI 辅助读者。23/43(53%)项研究使用了深度学习。大多数研究的偏倚风险和适用性问题较高,限制了结论。在独立 AI 荟萃分析的 6 项研究中,(汇总)敏感性为 91.2%(95%CI 82.2%至 95.8%);假阳性率为 16.5%(95%CI 9.4%至 27.1%);1 特异性;ROC-AUC 为 0.936。五项读者辅助 AI 研究中,(汇总)敏感性为 90.3%(95%CI 88.0%至 92.2%);假阳性率为 7.9%(95%CI 3.5%至 16.8%);1 特异性;ROC-AUC 为 0.910。
人工智能有可能支持临床医生检测脑动脉瘤。由于存在较高的偏倚风险和较差的可推广性,因此解释受到限制。需要多中心前瞻性研究来评估 AI 在临床实践中的应用。