Suppr超能文献

膝关节骨关节炎预测(KNOAP2020)挑战赛:一项基于 MRI 和 X 射线图像预测症状性放射学膝关节骨关节炎发生的影像分析挑战赛。

The KNee OsteoArthritis Prediction (KNOAP2020) challenge: An image analysis challenge to predict incident symptomatic radiographic knee osteoarthritis from MRI and X-ray images.

机构信息

Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands.

Department of General Practice, Erasmus MC University Medical Center, Rotterdam, the Netherlands.

出版信息

Osteoarthritis Cartilage. 2023 Jan;31(1):115-125. doi: 10.1016/j.joca.2022.10.001. Epub 2022 Oct 12.

Abstract

OBJECTIVES

The KNee OsteoArthritis Prediction (KNOAP2020) challenge was organized to objectively compare methods for the prediction of incident symptomatic radiographic knee osteoarthritis within 78 months on a test set with blinded ground truth.

DESIGN

The challenge participants were free to use any available data sources to train their models. A test set of 423 knees from the Prevention of Knee Osteoarthritis in Overweight Females (PROOF) study consisting of magnetic resonance imaging (MRI) and X-ray image data along with clinical risk factors at baseline was made available to all challenge participants. The ground truth outcomes, i.e., which knees developed incident symptomatic radiographic knee osteoarthritis (according to the combined ACR criteria) within 78 months, were not provided to the participants. To assess the performance of the submitted models, we used the area under the receiver operating characteristic curve (ROCAUC) and balanced accuracy (BACC).

RESULTS

Seven teams submitted 23 entries in total. A majority of the algorithms were trained on data from the Osteoarthritis Initiative. The model with the highest ROCAUC (0.64 (95% confidence interval (CI): 0.57-0.70)) used deep learning to extract information from X-ray images combined with clinical variables. The model with the highest BACC (0.59 (95% CI: 0.52-0.65)) ensembled three different models that used automatically extracted X-ray and MRI features along with clinical variables.

CONCLUSION

The KNOAP2020 challenge established a benchmark for predicting incident symptomatic radiographic knee osteoarthritis. Accurate prediction of incident symptomatic radiographic knee osteoarthritis is a complex and still unsolved problem requiring additional investigation.

摘要

目的

KNee 骨关节炎预测(KNOAP2020)挑战赛旨在客观比较在具有盲法真实数据的测试集中预测 78 个月内出现症状性放射学膝骨关节炎的方法。

设计

挑战赛参与者可自由使用任何可用的数据源来训练他们的模型。PROOF 研究的 423 个膝关节(超重女性膝关节骨关节炎预防研究)的测试集,包括磁共振成像(MRI)和 X 射线图像数据以及基线时的临床危险因素,对所有挑战赛参与者开放。挑战赛参与者没有获得真实的结果,即哪些膝关节在 78 个月内出现了症状性放射学膝骨关节炎(根据 ACR 联合标准)。为了评估提交模型的性能,我们使用了受试者工作特征曲线下面积(ROCAUC)和平衡准确率(BACC)。

结果

有 7 个团队共提交了 23 个参赛作品。大多数算法是基于 Osteoarthritis Initiative 数据进行训练的。ROCAUC 最高的模型(0.64(95%置信区间(CI):0.57-0.70))使用深度学习从 X 射线图像结合临床变量中提取信息。BACC 最高的模型(0.59(95% CI:0.52-0.65))集成了三个不同的模型,这些模型使用自动提取的 X 射线和 MRI 特征以及临床变量。

结论

KNOAP2020 挑战赛为预测症状性放射学膝骨关节炎的发生建立了基准。准确预测症状性放射学膝骨关节炎是一个复杂且尚未解决的问题,需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd86/10323696/652ff139dea0/nihms-1905689-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验