Suppr超能文献

通过X光片和磁共振成像估计全膝关节置换时间:一种使用自监督深度学习的多模态方法

Estimating time-to-total knee replacement on radiographs and MRI: a multimodal approach using self-supervised deep learning.

作者信息

Cigdem Ozkan, Chen Shengjia, Zhang Chaojie, Cho Kyunghyun, Kijowski Richard, Deniz Cem M

机构信息

Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016, United States.

Center of Data Science, New York University, New York, NY 10011, United States.

出版信息

Radiol Adv. 2024 Nov 15;1(4):umae030. doi: 10.1093/radadv/umae030. eCollection 2022 Jan 1.

Abstract

PURPOSE

Accurately predicting the expected duration of time until total knee replacement (time-to-TKR) is crucial for patient management and health care planning. Predicting when surgery may be needed, especially within shorter windows like 3 years, allows clinicians to plan timely interventions and health care systems to allocate resources more effectively. Existing models lack the precision for such time-based predictions. A survival analysis model for predicting time-to-TKR was developed using features from medical images and clinical measurements.

METHODS

From the Osteoarthritis Initiative dataset, all knees with clinical variables, MRI scans, radiographs, and quantitative and semiquantitative assessments from images were identified. This resulted in 895 knees that underwent TKR within the 9-year follow-up period, as specified by the Osteoarthritis Initiative study design, and 786 control knees that did not undergo TKR (right-censored, indicating their status beyond the 9-year follow-up is unknown). These knees were used for model training and testing. Additionally, 518 and 164 subjects from the Multi-Center Osteoarthritis Study and internal hospital data were used for external testing, respectively. Deep learning models were utilized to extract features from radiographs and MR scans. Extracted features, clinical variables, and image assessments were used in survival analysis with Lasso Cox feature selection and a random survival forest model to predict time-to-TKR.

RESULTS

The proposed model exhibited strong discrimination power by integrating self-supervised deep learning features with clinical variables (eg, age, body mass index, pain score) and image assessment measurements (eg, Kellgren-Lawrence grade, joint space narrowing, bone marrow lesion size, cartilage morphology) from multiple modalities. The model achieved an area under the curve of 94.5 (95% CI, 94.0-95.1) for predicting the time-to-TKR.

CONCLUSIONS

The proposed model demonstrated the potential of self-supervised learning and multimodal data fusion in accurately predicting time-to-TKR that may assist physicians to develop personalize treatment strategies.

摘要

目的

准确预测全膝关节置换术预期所需的时间(至全膝关节置换术的时间)对于患者管理和医疗保健规划至关重要。预测何时可能需要进行手术,尤其是在较短的时间范围内(如3年),可以使临床医生规划及时的干预措施,并使医疗保健系统更有效地分配资源。现有的模型缺乏进行此类基于时间预测的精度。利用医学图像和临床测量的特征开发了一种预测至全膝关节置换术时间的生存分析模型。

方法

从骨关节炎倡议数据集里,识别出具有临床变量、MRI扫描、X线片以及来自图像的定量和半定量评估的所有膝关节。这产生了895个在骨关节炎倡议研究设计规定的9年随访期内接受全膝关节置换术的膝关节,以及786个未接受全膝关节置换术的对照膝关节(右删失,表明其9年随访期后的状态未知)。这些膝关节用于模型训练和测试。此外,分别从多中心骨关节炎研究和医院内部数据中选取518名和164名受试者用于外部测试。利用深度学习模型从X线片和磁共振扫描中提取特征。提取的特征、临床变量和图像评估用于生存分析,采用套索Cox特征选择和随机生存森林模型来预测至全膝关节置换术的时间。

结果

通过将自监督深度学习特征与来自多种模态的临床变量(如年龄、体重指数、疼痛评分)和图像评估测量值(如凯尔格伦 - 劳伦斯分级、关节间隙变窄、骨髓病变大小、软骨形态)相结合,所提出的模型表现出强大的区分能力。该模型在预测至全膝关节置换术的时间方面,曲线下面积达到了94.5(95%置信区间,94.0 - 95.1)。

结论

所提出的模型证明了自监督学习和多模态数据融合在准确预测至全膝关节置换术时间方面的潜力,这可能有助于医生制定个性化的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fdc/12481692/be1a4622eb0e/umae030f1.jpg

相似文献

1
Estimating time-to-total knee replacement on radiographs and MRI: a multimodal approach using self-supervised deep learning.
Radiol Adv. 2024 Nov 15;1(4):umae030. doi: 10.1093/radadv/umae030. eCollection 2022 Jan 1.
4
Survival analysis on subchondral bone length for total knee replacement.
Skeletal Radiol. 2024 Aug;53(8):1541-1552. doi: 10.1007/s00256-024-04627-1. Epub 2024 Feb 22.
6
Prediction of total knee replacement using deep learning analysis of knee MRI.
Sci Rep. 2023 Apr 28;13(1):6922. doi: 10.1038/s41598-023-33934-1.
8
Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative.
PLoS One. 2021 Oct 21;16(10):e0258855. doi: 10.1371/journal.pone.0258855. eCollection 2021.
9
Total knee replacement: an evidence-based analysis.
Ont Health Technol Assess Ser. 2005;5(9):1-51. Epub 2005 Jun 1.

本文引用的文献

1
Artificial intelligence in knee osteoarthritis: A comprehensive review for 2022.
Osteoarthr Imaging. 2023 Sep;3(3). doi: 10.1016/j.ostima.2023.100161. Epub 2023 Jul 30.
2
MRI Advancements in Musculoskeletal Clinical and Research Practice.
Radiology. 2023 Aug;308(2):e230531. doi: 10.1148/radiol.230531.
3
Prediction of total knee replacement using deep learning analysis of knee MRI.
Sci Rep. 2023 Apr 28;13(1):6922. doi: 10.1038/s41598-023-33934-1.
4
Self-Supervised Learning by Estimating Twin Class Distribution.
IEEE Trans Image Process. 2023;32:2228-2236. doi: 10.1109/TIP.2023.3266169. Epub 2023 Apr 21.
5
Predicting total knee replacement at 2 and 5 years in osteoarthritis patients using machine learning.
BMJ Surg Interv Health Technol. 2023 Feb 15;5(1):e000141. doi: 10.1136/bmjsit-2022-000141. eCollection 2023.
7
Prediction models for the risk of total knee replacement: development and validation using data from multicentre cohort studies.
Lancet Rheumatol. 2022 Feb;4(2):e125-e134. doi: 10.1016/s2665-9913(21)00324-6. Epub 2022 Jan 5.
9
Survival prediction models: an introduction to discrete-time modeling.
BMC Med Res Methodol. 2022 Jul 26;22(1):207. doi: 10.1186/s12874-022-01679-6.
10
The Viability of an Artificial Intelligence/Machine Learning Prediction Model to Determine Candidates for Knee Arthroplasty.
J Arthroplasty. 2023 Oct;38(10):2075-2080. doi: 10.1016/j.arth.2022.04.003. Epub 2022 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验